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PROBLEM 1 

SPECIFIED DATA 

Preamplifier 

Noise referred to the input  2 40bu bbS S nV Hz    (unilateral density)  

Band limited by a pole at  100pf MHz  

Rectangular pulse  

Duration Tr=4 μs Amplitude  Ar 

Exponential pulse 

  et T
e ex t A e  with time constant  Te = 2μs amplitude  Ae 

(A) Comparing the measurable pulse amplitude without filtering and with optimum 
filtering 

Without filtering: the noise is collected over the entire preamplifier band 

2

2u b pa b pn S f S f


    500μV 

The minimum measurable amplitude is equal for both pulses 

2
,min ,min 2r e u b pA A n S f


    500μV 

Optimum filtering: since the noise is white over the entire band, the weighting function of the 
optimum filter is equal to the waveform of the signal pulse. 

1) Rectangular pulse 

Pulse signal    r rx A  for   0<t< Tr 

Optimum weighting function    
1

r
r

w
A

  for   0<t< Tr 

Output signal   
0

rT

ro r r ry x w dt A   

Output noise   2 2

0
0 bb

ro bb ww bb r
r

S
n S k S w dt

T


    

Output S/N  

2

r r

ro bb bu

r r

S A A

N S S
T T

    
 
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Minimum pulse amplitude ,min 2
bu

r
r

S
A

T
  14,2 μV 

2) Exponential pulse 

Pulse signal    et T
e ex A e   for   t>0 

Optimum weighting function  
1

et T
e

e

w e
T

    

Output signal   2

0 0

1

2

r
e

T t T e
eo e e e

e

A
y x w dt A e dt

T

      

Output noise    22 2
20 0

1
0

2
et T bb

eo bb ww bb e bb
e e

S
n S k S w dt S e dt

T T

        

Output S/N   
2

e

eo bb

e

S A

N S
T

   
 

 

Minimum pulse amplitude ,min

2 bb bu
eo

e e

S S
A

T T
    28,3μV 

3) Comparation of results with rectangular and exponential pulses having  Tr = 2Te     

Let us consider input pulses with Tr = 2Te and equal amplitude Ar = Ae , each one filtered by its 
optimum filter. We note that  

 the output amplitude of the optimally filtered rectangular pulse is higher  

  ro ry A  and   
2 2

e ro
eo

A y
y    

 the output noise power is equal in the two cases, 

 2 2

2
bb bb

ro eo
r e

S S
n n

T T
    

 therefore, the minimum measurable pulse is smaller for the rectangular pulse 

,min
bb

r
r

S
A

T
     ,min ,min

2
2 2bb bb

e r
e e

S S
A A

T T
    

The result obtained with the rectangular pulse is better and this can be intuitively explained by 
comparing the features of the two pulses. For instance, the greater energy of the input rectangular 
pulse points out that the optimized S/N of this pulse is greater.  
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(B) measurable amplitude with practically implementable continuous analog filters that 
approximate the optimum filter 

1) Rectangular Pulse 

The optimal filtering can be very well approximated with a mobile-mean integrator. This circuit has 
indeed a rectangular weighting function with duration Tr  set by a delay line, which can be fairly 
well implemented in practice for delays with moderate values, as in the case here considered. In this 
case, we have a practically implementable circuit that gives an excellent approximation of the 
optimum filter. Therefore, the computations and conclusions seen in Sec. A1 are valid also for this 
case 

2) Exponential pulse 

We may try to approximate the optimum filter with an RC integrator circuit, which has an 
exponentially decaying delta-response h(t) 

  1 t RCh t e
RC

  

However, the filter weighting function is the delta-response reversed in time. Therefore, the 
weighting function of this approximate-optimum filter is reversed in time with respect to that of the 
true optimum filter. The approximation is moderate, but it is based on a simple and effective filter 
and is worth evaluating it. A comparison of the plot of h(t) to that of the optimum filter weighting 
function  

1
et T

e
e

w e
T

  

suggests to select a filter time constant RC equal to the signal time constant Te . This selection is 
supported by the fact that this approximate-optimum filter gives the same output noise as the true 
optimum filter. In fact, by reversing in time a function, its autocorrelation does not change. 
Therefore, the output noise is the same computed in Sec. A 2. 

The output signal waveform ye(t) can be obtained by convolution of input pulse and delta-response  

       
0

* ee e
t t TT t T

e e e e
e e

dt t
y t x t h t A e e A e

T T
       

The maximum output amplitude is  

e
em

A
y

e
  

and by recalling from Sec. A 2 the output noise 

    22 2 2
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T T
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We get S/N   
1

2

e

e bb

e

S A

N e S
T

   
 

 

And therefore the minimum pulse amplitude 

   ,min ,min ,min

2
1,36

2 2 2
bb bb

e eo eo
e e

S e S e
A e A A

T T
    = 38,5 μV 

is 36% higher than the true optimum 

(C) measurable amplitude with discrete analog filters that approximate the optimum filter 

1) Rectangular pulse 

The optimum weighting function can be well approximated by a discrete integrator (DI) with 
samples taken over Tr spaced by an interval Δts and weighted with constant weight 1/Tr. This is 
evident from the plot of the function and is easily checked by computation   

Signal output  s
r j j s r rj j

r

t
y w x t A A

T


      

Noise output   2 2
2

1 1 1
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2r bb ww bb j s bb s bb buj j
r r r

n S k S w t S t S S
T T T
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Output S/N  r

r bb

r

S A

N S
T

   
 

 

Minimum pulse amplitude ,min 2
bb bu

r
r r

S S
A

T T
   14,2 μV 

We conclude that in the case of rectangular pulse it is easy to obtain a good approximation of the 
optimum filtering both with continuous filtering and with discrete filtering. 

2) Exponential pulse 

Discrete-time sampling followed by digital conversion and elaboration of samples gives great 
flexibility in the selection of the filter weighting. It is thus possible to obtain a good approximation 
of the optimum weighting also in case of exponential pulse, by selecting a distribution of the 
discrete weights that closely approximates the continuous exponential weighting. In order to 
achieve this, it is evident from the plots and it can be confirmed by computation that the time 
spacing between samples must be small with respect to the time constant Te of the pulse.  

With sampling interval Δt  and weighting 
1

ej t T
j

e

w e
T

    
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the sampled signal is  ej t T
j ex A e     

The output signal is  2 ej t T
e j j ej j

e

t
y w x t A e

T
  

     

by denoting    
e

t

T
 
  (with  α<<1 ) 

we get    2
21

j
e e ej

y A e A
e




 
 

  

with sufficienly small α, i.e. with  α<<1  we get   

  
21 1 1 2 2

e
e e e

A
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e 

 
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  
 

The output noise is  

   2 2 2
2 2

1 1
0

1
j

e bb ww bb j bb bbj j
r r

n S k S w t S t e S
T T e





     

   

with sufficienly small α, i.e. with  α<<1  we get 
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In conclusion, with this approximation we get S/N and minimal measurable amplitude practically 
equal to the optimum 

Output S/N   
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Minimum pulse amplitude ,min

2 bb
e

e

S
A

T
   28,3μV 

 


