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    CHAPTER      1 

Introduction 
 
This book was conceived as a didactic support for the course of Signal Recovery 
held by the authors Ivan Rech and Giulia Acconcia at Politecnico di Milano. 
The idea is to provide the students with organized material where they can find 
what was explained in class; examples, digressions, links with real applications 
described in class will not be reported in this text. 
 
Signal Recovery 
The title of the course to which this book refers, and the title of this text, is Signal 
Recovery. This course is nothing more than the evolution of the "Instrumentation and 
electronic measurements" course held at the Politecnico di Milano by Prof. Sergio 
Cova for many years. This book is based on the work of Prof. Sergio Cova to create 
a course and teaching material that would allow the student to fully understand the 
concept of signal recovery thanks to the collection of material that is difficult to 
recover in an organized form. Indeed, the final aim of this course is to understand 
how to extract the signal information when it is partially or completely buried into 
noise. To this aim, we will first study how to deal with signals, we will recall or 
introduce some key mathematical tools that will allow us to perform a deep analysis 
of signals first, and then we will do the same for noise. 
The course is not intended to just lead the students to know and properly describe the 
electronic techniques and instrumentation developed for recovering signals from 
noise, but it rather aims at giving a good insight into problems and the approaches 
developed to solve them. Students need to develop critical thinking starting from a 
critical evaluation of the presented solutions and avoiding the attitude where sensors 
and electronics are designed and employed just according to some established rule or 
standard. It is instead necessary to clarify the reasons of any choice and decision 
made in the design of the acquisition chain, on the basis of the physics of phenomena 
involved, of the basic principles of signal and noise processing and of the actual 
performance of the available devices. It is necessary to clearly distinguish between 
the intrinsic limitations set by physical laws and the current limitations set by the 
state of the art, which can be overcome by technological progress. In essence, gaining 
insight means to progress at the pace of the technology evolution and be able to 
contribute to it. 
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    CHAPTER      2 

Description of signals 
 
The goal of this course is to develop a method for recovering signals, especially 
under critical circumstances. To this aim, the exploitation of any information that 
is associated only with the signal, making it different from noise and disturbances, 
is of the utmost importance. In this chapter we will present some key tools to 
describe signals and their properties.  
 
2.1 Signals  
In the most general case, a deterministic signal is a function that assigns to a variable 
a certain value for each time 𝑡. Intuitively, it is something that varies over time and 
it carries a certain amount of information. In principle, there are no restrictions on the 
nature of the function that describes the signal, but, in practice, a signal typically 
comes from a measure made in the real world, for example an electrical variable 
produced by a sensor. In figure 2.1 the simplified scheme of a typical chain used to 
acquire and measure a signal is depicted. 

 
Figure 2.1 Simplified scheme of a typical acquisition chain  

   
First of all, we need a sensor to translate a physical quantity of interest (e.g. 
temperature, light, etc.) into an electrical quantity. Then, we typically have some 
blocks for signal conditioning and recording. In particular, we usually exploit 
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amplifiers to acquire and amplify the signal, filtering stages to select the signal of 
interest, and converters to translate the signal into digital words.  
As we will see in this course, one of the main issues in signal acquisition is the 
presence of the so-called noise. Noise is like a statistical signal that can be both 
related to the acquisition chain and inherently associated with the signal of interest. 
In both cases its existence can be justified by observing that, if we consider an 
arbitrary physical process, there will always be some fluctuations related to it. For 
instance, we will see that random thermal motion of electrons into a resistor causes a 
fluctuation of the voltage across it, or the statistics of photon arrivals can cause a 
fluctuation of the intensity in a ray of light. Both these phenomena are statistical and 
do not carry useful information: therefore, their output is noise.  
The presence of noise corrupts in some way the information contained into the signal, 
so we need to use a particular class of blocks, called filters, that are designed to make 
the most of the differences between the signal and the noise, with the ultimate goal 
of reducing noise and enhancing the signal of interest. Nonetheless, before starting 
the study of filters and their behavior, we need to equip ourselves with some key tools 
that will come in handy. 
The first fundamental tool is the mathematical description of both signals and noise 
in two domains: the time domain and the frequency domain. Knowing both these 
mathematical descriptions will allow us from time to time to study the problems in 
the domain in which the analysis and the computation are easier. For this reason, in 
the next section we will make a brief recall of the Fourier Transform basic principles 
and some of its properties that we will use during our studies. The following 
paragraph is only a reference, so refer to specific texts of mathematical analysis signal 
theory for a complete and detailed study. 

 
2.2 Fourier transform 
One of the most important mathematical tools to analyze signals is the Fourier 
Transform. This tool gives us the opportunity to analyze problems both in the time 
domain and in the frequency domain, choosing from time to time the simplest domain 
to solve our specific case.  
The main idea behind the Fourier-transform analysis is that any arbitrary signal can 
be seen as superposition of sinusoids.  
If we consider an arbitrary signal 𝑥(𝑡), it may be written as: 

 
  

𝑥(𝑡) = &
!"

#"
𝑋(𝑓)𝑒$%&'(𝑑𝑓 

 
in which 𝑋(𝑓) is called Fourier Transform of 𝑥(𝑡). This formula is called Anti-
Fourier transform. In general, the quantity 𝑋(𝑓) is a complex number and the 
intuition behind it is that it describes the frequency content at frequency 𝑓 of the 
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initial signal 𝑥(𝑡). In particular, the modulus of 𝑋(𝑓) denotes the amplitude of the 
complex sinusoid at each frequency in the superposition, and its phase describes the 
phase of that complex sinusoid.  

  

𝑋(𝑓) = &
!"

#"
𝑥(𝑡)𝑒#$%&'(𝑑𝑡 

  
Considering at first the case of 𝑓 = 0, we can rewrite:  

  

𝑋(0) = &
!"

#"
𝑥(𝑡)𝑑𝑡 

  
This equation is just saying that the frequency content at zero frequency, i.e. the DC 
value of the signal 𝑥(𝑡), may be computed as something like an average over time, 
and this is clearly intuitive.  
In the following, the main properties of the Fourier transforms that are extremely 
useful in this course are briefly reported. 
 
P1. Value in zero and integrals: 
Starting from the definition of Fourier transform we directly obtain: 
  

𝑋(0) = &
!"

#"
𝑥(𝑡)𝑑𝑡 

  
and from the Anti-Fourier transform: 

  

𝑥(0) = &
!"

#"
𝑋(𝑓)𝑑𝑓 

  
This means that the value in zero of the Fourier transform equals the integral of the 
function over all the time domain. Analogously, the value in zero of the time-domain 
function is equal to the integral of the Fourier transform over all the frequency 
domain.  

 
P2. Duality: 
We can make an important remark at this point. If we look at the formulas that we 
have obtained so far for the Fourier and Anti-Fourier transforms, we can notice that 
they are almost equal, apart from a change in the sign of the exponent. Actually, this 
means that not only the function x(t) can be seen as the superposition of sinusoids, 
but this is also true for its Fourier transform. Indeed, the Fourier transform formula: 
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𝑋(𝑓) = &
!"

#"
𝑥(𝑡)𝑒#$%&'(𝑑𝑡 

  
says that X(f) can be written as a superposition of complex exponentials, and the 
weights of this superposition are encoded in the function x(t) itself. The time domain 
and the frequency domain result as two faces of the same coin, describing the same 
situation in two different ways. 
  
P3. Fourier transform of a periodized function: 
A periodization in time domain corresponds to sampling in the frequency domain. 
Equally, sampling in time domain corresponds to a periodization in the frequency 
domain. 
 
P4. Convolution and product: 
The convolution of two signals in the time domain corresponds to the multiplication 
of their Fourier transforms in the frequency domain and vice versa. 
In the same way, the multiplication of two signals in the time domain corresponds to 
the convolution of their Fourier transforms in the frequency domain and vice versa. 
 
A detailed description of the Fourier Transform and all its properties is not part of 
this course. Here just some basic concepts that will be useful in future chapters have 
been reported. Just to show an example of practical use of the Fourier Transform and 
its properties, let’s consider the case of truncated signals: 
 

 
Figure 2.2 Calculation of the Fourier transform of a truncated sinusoidal 
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If we consider a sinusoidal signal, it can be demonstrated that its Fourier transform 
is a pair of Dirac deltas, as shown at the top right of Figure 2.2. 
Nonetheless, in the real world we will never work with a real sinusoidal signal since 
we cannot observe it from minus infinite to plus infinite, but we will work on a part 
of it. How does this affect the information of our signal? 
We can model the finite observation window of our experiments by simply 
multiplying the sinusoidal waveform by a rect(t) (rectangular function) featuring a 
time width equal to our observation window. What is the effect in the frequency 
domain? We are multiplying two signals (rect(t) and sinusoidal waveform) in the 
time domain, so the result in the frequency domain is given by the convolution of the 
Fourier transform of the sinusoidal waveform with the one of the rect(t), that is a 
cardinal sinc function. 
The result is visible at the bottom of Fig 2.2 and it gives us the possibility to make 
some simple observations: 
 
• in reality, the signal is always available over a finite time interval:  

therefore, in practice we always deal with truncated signals; 
• signal-cropping in time corresponds to convolution of the signal in the f domain  

with the transform of the rectangle (sinc function); 
• the convolution spreads the signal in the f domain, i.e. it makes it wider and 

smoother; 
• the narrower is the window 2T, the wider is the sinc and the more significant is 

the signal spreading in frequency domain; 
• to properly apply the sampling theorem we need to observe that   

the sampling frequency fS to be employed for a truncated sinusoid of frequency 
fm  is  NOT   fS ≈ 2fm, but it must be remarkably higher   (fS  >>  2fm).  

 
2.3 Linear systems and convolution operation 
We will now discuss the effect of a generic system on a signal. A system can be seen 
as a "black box" having an input and an output. Among all systems, we will first 
consider a particular class of them: the linear systems.  

   
Figure 2.3. 
 
Consider a system and let ℎ(α) be the function that gives the output for each possible 
input. This means that, if the input signal is 𝑥(𝑡) , the output is 𝑦(𝑡) = h[𝑥(𝑡)](𝑡).  
A system is called linear if, when scaling the input signal by a certain constant, also 
the output is scaled by the same constant and when the sum of two signals 𝑥) + 𝑥% is 
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applied at the input, the system produces an output equal to the sum of the individual 
responses to the input signals. Mathematically, a system is linear if:  
 

h[α𝑥)(𝑡) + β𝑥%(𝑡)](𝑡) = 	αh[𝑥)(𝑡)](𝑡) + 	βh[𝑥%(𝑡)](𝑡) 
 
How can we exploit the property of linearity?  
Let’s consider this idea: if we can write a generic signal as a superposition of 
elementary signals and if we can calculate the response of the system to these 
elementary signals, then we can easily find the response to any arbitrary input. This 
can be done, for instance, with Dirac Delta functions. How can we write an arbitrary 
signal 𝑥(𝑡) as a superposition of Delta functions? 
The Dirac Delta centered at time 𝜏 needs to have an area equal to the value of the 
signal 𝑥(𝑡) at that point, 𝑥(𝜏). Obviously, there are infinitely many Dirac Deltas so 
the superposition has to be done by means of an integral operation. We then obtain: 

  

𝑥(𝑡) = &
!"

#"
𝑥(𝜏)𝛿(𝑡 − 𝜏)𝑑𝜏 

 
We can notice that the integral operation makes sense also for another reason. In fact, 
our signal is finite at each time, so it is not completely correct to say that it can be 
written as superposition of Deltas. It is more correct to say that it is the superposition 
of areas of Deltas. It is worth recalling that a Dirac Delta 𝛿(𝑡 − 𝜏) is a function that 
is null at each time apart from 𝑡 = 𝜏, where it is infinite, while its area is finite and 
equal to 1. From this point of view the previous formula makes sense. With the 
integral we basically extract the area of each Delta in the superposition.  
Another interpretation could be given looking at the function 𝑥(𝜏)𝛿(𝑡 − 𝜏)𝑑𝜏 inside 
the integral. In general, by multiplying a signal 𝑔(𝑡) by a small element 𝑑𝜏 we 
basically compute the local area of the function. If the function is finite, we obtain a 
null value, since as 𝑑𝜏 goes to zero the area always decreases reaching the value 0. 
However, a Delta function is infinite for 𝑡 = 𝜏 and with a finite local area, equal to 
1, while its value is zero for 𝑡 ≠ 𝜏, so also its local area will be zero at any 𝑡 ≠ 𝜏 (this 
is actually how a Dirac Delta is defined). From this point of view the interpretation 
of the previous formula is clear: if we have functions that are 1 at a particular point 
and zero everywhere else, it is obvious that we can construct all the possible signals 
by taking the superposition of these elementary functions.  
Knowing this fact and using linearity we can write the response of a linear system to 
an arbitrary input as follows: 

  

𝑦(𝑡) = h[𝑥(𝑡)](𝑡) = h[&
!"

#"
𝑥(𝜏)𝛿(𝑡 − 𝜏)𝑑𝜏](𝑡) = &

!"

#"
𝑥(𝜏)h[𝛿(𝑡 − 𝜏)](𝑡)𝑑𝜏 

  
where we have used the properties of linearity to compute the last equivalence.  
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Looking at the final expression, we see that we can compute 𝑦(𝑡) for any 𝑥(𝑡) if we 
know h[𝛿(𝑡 − 𝜏)], that is the so-called impulse response. However, we notice that, 
in general, the impulse response depends on 𝜏. This reflects the fact that the system 
can change over time. This means that if we apply an impulse at time 𝑡 = 0 we could 
obtain an output waveform completely different from what we would get applying 
the impulse at a different time 𝜏. Systems like that are called time-variant systems. 
Intuitively, they describe situations in which the topology of the system is changing 
over time. For instance, this is the case of a circuit in which a switch is present. 
However, at the beginning we will focus our attention on a particular class of systems 
called Linear Time Invariant (LTI) systems.  
In LTI systems, the response to an input signal does not depend on when the signal 
is applied, and the output waveform is "synchronized" with the input signal, i.e. if we 
delay the input also the output is delayed by the same quantity. Intuitively these are 
systems whose topology does not change with time: in this case it is obvious that the 
response to a certain input does not depend on where the input is applied, since the 
system is not changing.  
Formally we will define a time-invariant system as a system such that: 
  

h[𝑥(𝑡 − 𝜏)](𝑡) = h[𝑥(𝑡)](𝑡 − 𝜏) 
  
This property is called time invariancy.  
Let’s see how we can exploit this property. Using the equation that we have 
previously found for the output signal, if we call ℎ(𝑡) = h[𝛿(𝑡)](𝑡) we obtain: 

  

𝑦(𝑡) = &
!"

#"
𝑥(𝜏)h[𝛿(𝑡 − 𝜏)](𝑡)𝑑𝜏 = &

!"

#"
𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏 

  
This result is so important that the operation represented by the last integral has a 
specific name: it is called convolution.  
In general, given two functions 𝑓 and 𝑔, their convolution is another function 𝜓 
defined as:  

𝜓(𝑡) = (𝑓 ∗ 𝑔)(𝑡) = &
!"

#"
𝑓(𝛼)𝑔(𝑡 − 𝛼)𝑑𝛼 

 
If we want to compute the convolution at time 𝑡 = 0 , we need to solve the following 
integral:  

𝜓(0) = &
!"

#"
𝑓(𝛼)𝑔(−𝛼)𝑑𝛼 

 
This means that we need to take the function 𝑔, flip it, multiply it by the function 𝑓 
and compute the area of the resulting function, as depicted in figure 2.4. Similarly, 
the convolution at an arbitrary time can be computed as follows:  
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𝜓(𝑡) = &
!"

#"
𝑓(𝛼)𝑔(𝑡 − 𝛼)𝑑𝛼 = &

!"

#"
𝑓(𝛼)𝑔(−(𝛼 − 𝑡))𝑑𝛼 

  
which means that we need to take 𝑔, flip it, but before multiplying it by the function 
𝑓, we need to delay 𝑔 in time by 𝑡. Then we can compute the area of the resulting 
function. 
 
 

 
  Figure 2.4 Graphical calculation of the convolution of two signals 
 
In LTI systems, the output at time t can be obtained by computing the convolution 
between the input signal and the so-called impulse response ℎ(𝑡). In fact, this means 
taking something like a linear combination of the values of the input, each one altered 
by the system, as will be clearer in the following chapters. This operation can be done 
only with linear systems. 
 
2.4 Energy of a signal 
In this paragraph, we will define one of the main properties of a signal: the energy.  
In physics the concept of energy is widely used: for example, for a particle moving 
with speed 𝑣 we define a kinetic energy which is proportional to 𝑣%; in the same way, 
a capacitor charged at a voltage 𝑉 stores an electrostatic energy that is proportional 
to 𝑉%; one more time, an electromagnetic wave propagating in a certain mean carries 
an energy proportional to the square magnitude of the electric field or magnetic field. 
If we want to generalize this concept to signals, we have to embed the basic properties 
of physical energy. In particular, the energy is always positive, it is zero only when 
the quantity is zero and it is proportional to the magnitude squared. Given a signal 
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𝑥(𝑡) the first idea can be to consider |𝑥(𝑡)|%. This can be a good candidate, but it is 
a function of time. If we want just a number, taking into account in some way the 
behavior of our signal on all the real line, the idea can be to take the integral of the 
previous quantity. We then define the energy of a signal 𝑥(𝑡) as: 
 

𝐸[𝑥(𝑡)] = &
!"

#"
𝑥(𝑡)	%𝑑𝑡	

  
Signals for which this quantity exists (in a finite way) are called energy signals. 
Examples are signals with a finite duration in time, or functions going to zero at 
infinite quite rapidly. 

 
2.5 Similarity of two functions, Cross-correlation operator 
We will see in the next two paragraphs how the energy of a signal is strictly connected 
to the autocorrelation function. To study this new tool let’s make a step back and 
let’s start from the concept of similarity between signals. Suppose we have two 
functions 𝑓 and 𝑔 , as shown in Fig. 2.5, and we want in some way to understand if 
they are similar or not.  

 
Figure  2.5. 

   
Intuitively, what we want is a number characterizing how much these two functions 
resemble each other. We need an operation that in some way compares the values of 
the two functions at each time 𝑡 and tells us, using some sort of operation, how much 
they are similar. However, we can understand that such a comparison cannot work. 
In fact, if we have, for example, two functions that are identical but shifted in time, 
by applying our "comparison", we will certainly obtain no similarity at all since we 
supposed that our operation directly compares the functions at each time 𝑡 and in this 
case they are always different.  
This means that using only a single comparison is not sufficient. To solve this 
problem the idea can be to make an infinite number of comparisons. We can compare 
the first function with the second one shifted by all the possible time intervals. This 
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can be done to avoid the problem of having two identical functions shifted by a 
certain amount of time. This means that, at the end, we will not obtain a single 
number, but a set of numbers related to particular shifts of the second function. These 
numbers can be summarized in a function that we will call cross-correlation function. 
Given two signals f and g, the cross-correlation function is defined as  
  

𝐾',+(𝜏) = &
!"

#"
𝑓(𝛼)𝑔(𝜏 + 𝛼)𝑑𝛼 

 

Where 𝜏 is the relative time shift that we apply to g before we compare it to f.  

 
 

Figure  2.6. 
 

For example, if we want to compute the cross-correlation for 𝜏 = 0 we need to 
compute:  

𝑘',+(0) = &
!"

#"
𝑓(𝛼)𝑔(𝛼)𝑑𝛼 

 

In this case, we take the waveform of 𝑓 and the waveform of 𝑔 without any shift, we 
multiply them together and compute the area. If we take 𝑓 = 𝑔 we obtain the so-
called autocorrelation function.  
 

𝐾,,,(𝜏) = &
!"

#"
𝑥(𝛼)𝑥(𝜏 + 𝛼)𝑑𝛼 

 

Intuitively the autocorrelation function gives us information on the amount of time 
for which our signal is coherent with itself. Said in other terms, if we have an 
autocorrelation in time that is very concentrated at the origin this means that the 
signal is completely changing as we consider times larger than 0. Instead if we have 
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an autocorrelation very spread in time we expect our starting signal not to change so 
much for times larger than 0. Under this interpretation, looking at the autocorrelation 
waveform we can understand in some way where the information is localized in our 
signal of interest. 

 
2.6 Properties and results related to the Cross-correlation 
The cross- and autocorrelation functions are not defined for all the signals. In 
particular, it is possible that the integrals defining them do not converge. For this 
reason, these operations are defined just for a class of signals. For energy signals, i.e. 
signals with finite energy, the integrals always converge. Therefore, in the following 
we will always consider energy signals. For this reason the correlation operations we 
defined here are called energy correlations. Later we will analyze how to generalize 
these concepts to signals with infinite energy.  
Now, we can observe that if we evaluate the autocorrelation function for 𝜏 = 0, that 
is: 

𝐾,,,(𝜏) = 	∫
!"
#" 𝑥%(𝑡)𝑑𝑡. 
 

we compute the same operation we have used in the previous paragraph to define the 
energy of a signal.  
We then conclude that in general: 
  

𝐾,,,(0) = 𝐸[𝑥(𝑡)] 
  
To help the reader to become familiar with the concepts of this paragraph, we will 
now report an example. Let’s consider an exponential signal 
 

𝑥(𝑡) = 1(𝑡)A𝑒
#(
-!  

 

 in which 1(𝑡) is a step function, as in Fig. 2.7. First, we will compute the value 
𝐾,,,(0), which is equal to the energy of our signal.  

  

𝐸[𝑥(𝑡)] = 𝐾,,,(0) = &
!"

.
𝑥(𝑡)%𝑑𝑡 = 𝐴%

𝑇/
2  

  
To compute the value 𝐾,,,(𝜏) we need to multiply the exponential with itself shifted 
to the left by 𝜏 and compute the area, as shown in Fig. 2.7.  
Without doing the calculation we can immediately obtain the result. Indeed, the 
calculation we have to do is the same of before, but in this case the second waveform 

is scaled by the value 𝑒
# "
#!. And this is true both for 𝜏 > 0 and 𝜏 < 0. So, also the 

correlation is scaled by the same quantity and we immediately obtain:  
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𝐾,,,(𝜏) = 𝐾,,,(0)𝑒
#|1|-! = 𝐴%

𝑇/
2 𝑒

#|1|-!  

  
This simple example shows how, starting from the graphical definition of correlation, 
we can immediately obtain the result without doing a lot of calculations. Let’s apply, 
as example, the same approach to a different signal. What happens if we take 𝑥 as a 
sum of two exponentials shifted in time as we can see in figure 2.8? For simplicity 
we will consider a height of 1.  
 

 
Figure  2.7. 

   
 

Let’s write                  𝑥(𝑡) = 1(𝑡)𝑒
# $
#! + 1(𝑡 − 𝑇2)𝑒

#($&#')#! .  
 
Calling 𝑥) and 𝑥% the two exponentials in the sum we may write, noticing that the 
autocorrelation is a linear operation with respect to the function we are using: 

  
𝐾,)!,*,,)!,* = 𝐾,),,) +𝐾,*,,* +𝐾,),,* +𝐾,*,,) 

  
Clearly 𝐾,),,) = 𝐾,*,,* since the autocorrelation function of two equal waveforms is 
the same, independent on where the waveform is centered. This is obvious if we think 
to the graphical interpretation of autocorrelation. Indeed, the shifting operation is 
always made with respect to the first waveform, so it does not depend on where it is 
centered. However, the terms 𝐾,),,* and 𝐾,*,,) are clearly different since now the 
two waveforms we are "correlating" are shifted with respect to each other. Thinking 
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to the graphical definition of the correlation let’s compute 𝐾,),,* as we can see from 
figure 2.8.  

   
Figure  2.8. 

 
Clearly for 𝜏 ≈ 0 we expect the correlation to be zero, since the two waveforms are 
far to each other. For 𝜏 = 𝑇2 we instead expect the maximum value since the two 
waveforms are exactly overlapping. And it is easy to see that the overall correlation 
is just the autocorrelation of an exponential we computed before shifted by 𝑇2 
towards the right.  
 
What about 𝐾,*,,)?  
 
In this case we expect the maximum value to be at 𝜏 = −𝑇2 since we have to shift 
the second function by 𝑇2 towards the right. So we obtain the plot for the overall 
autocorrelation shown in the next figure. Formally we obtain: 

  

	𝐾,,,(𝜏) = 2𝐾,),,)(𝜏) + 𝐾,),,*(𝜏) + 𝐾,*,,)(𝜏) = 𝑇/𝑒
#|1|-! +

𝑇3
2 𝑒

#|1#-'|-! +
𝑇/
2 𝑒

#|(!-'|-!  

 

   
Figure 2.9. 

 
2.7 Relation between convolution and correlation 
We can observe that the procedure needed to compute the cross-correlation is similar 
to the operations needed to compute convolution: the only difference is that cross-
correlation does not require the second function to be flipped before it is shifted and 
the area is computed. Also, we have seen that in convolution the shifting operation is 
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directed towards the right whereas in the case of the cross-correlation it is towards 
the left. However, we expect there is some relation between them. When we compute 
the cross-correlation between 𝑓 and 𝑔, as we can see from the figure we need to shift 
𝑔 towards the left, for 𝜏 > 0.  

 
Figure  2.10 
 
We can observe that, from the point of view of 𝑔, it is like 𝑓 is shifting towards the 
right by the same quantity. This is good because if we want to find the convolution 
somewhere, we need to have a shift towards the right. For the convolution, since it is 
commutative, it is the same to flip and shift the first or the second function.  
We know that the operation of convolution flips one of the two functions, whereas 
the correlation does not. The idea can then be to apply the convolution operation after 
a "pre-flipping" of the first function, as we can see in figure 2.11. In this way, when 
we flip it, the function will return to its original form as it is underlined in figure 2.11. 
 

 
Figure 2.11. 
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To summarize, it seems that the cross-correlation between 𝑓 and 𝑔 is equivalent to 
the convolution between 𝑔 and 𝑓, flipped with respect to the time axis. (since 
convolution is commutative actually the order is not important) So our guess is: 

 
𝐾',+(𝜏) = (𝑓(−𝑡) ∗ 𝑔(𝑡))(𝜏) 

Let’s prove it.  
 

(𝑓(−𝑡) ∗ 𝑔(𝑡))(𝜏) = &
!"

#"
𝑓(−𝛼)𝑔(𝜏 − 𝛼)𝑑𝛼 

 

Making a change of variable 𝛾 = −𝛼 we get: 
  

(𝑓(−𝑡) ∗ 𝑔(𝑡))(𝜏) = &
!"

#"
𝑓(𝛾)𝑔(𝜏 + 𝛾)𝑑𝛾 = 𝐾',+(𝜏) 

  
 That is the result we wanted to prove. 
 
2.8 Frequency interpretation of the energy 
We have previously defined the energy of a signal as:  

  

𝐸[𝑥(𝑡)] = &
!"

#"
𝑥(𝑡)%𝑑𝑡 

  
As always, we can try to give a view of the energy in frequency domain. Applying 
the Parseval theorem we can obtain: 
  

𝐸[𝑥(𝑡)] = &
!"

#"
𝑥(𝑡)%𝑑𝑡 = &

!"

#"
|𝑋(𝑓)|%𝑑𝑓 

  
This result gives us an insight. The term |𝑋(𝑓)|%𝑑𝑓 in the previous formula may be 
thought as the contribution of energy from the component at frequency 𝑓 of our 
signal. This is why |𝑋(𝑓)|% is defined as the energy spectral density 𝑆,(𝑓) of our 
signal.  

 
2.9 Fourier transform of the Energy Autocorrelation, relation 
with energy spectrum 
Let’s see how the autocorrelation tool and the energy spectrum are strictly related. 
We can start from the relation between autocorrelation and energy 

  
𝐾,,,(0) = 𝐸[𝑥(𝑡)] 
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Using the energy spectral density of 𝑥(𝑡), 𝑆(𝑓) we can also write:  
 

𝐾,,,(0) = 𝐸[𝑥(𝑡)] = &
!"

#"
𝑆(𝑓)𝑑𝑓 

 

Recalling that one of the Fourier transform properties is that its integral is equal to 
the value in zero of the function in time, we can guess that the Fourier transform of 
the autocorrelation is the energy spectral density.  
In order to do that, let’s use the expression of the autocorrelation in terms of 
convolution, as we have done before:  

  
𝐾,,,(𝜏) = 𝑥(𝑡) ∗ 𝑥(−𝑡)(𝜏) 

  
Taking the Fourier transform of both sides we get, using the Fourier transform of the 
convolution:  

  
ℱ[𝐾,,,](𝑓) = ℱ[𝑥(𝑡) ∗ 𝑥(−𝑡)](𝑓) = ℱ[𝑥(𝑡)](𝑓)ℱ[𝑥(−𝑡)](𝑓) 

  
It is very easy to prove that ℱ[𝑥(−𝑡)](𝑓) = ℱ[𝑥(𝑡)](−𝑓), i.e. flipping a function 
with respect to the time axis flips also the Fourier transform with respect to the 
frequency axis. So: 

  
ℱ[𝐾,,,](𝑓) = 𝑋(𝑓)𝑋(𝑓) = |𝑋(𝑓)|% 

  
But |𝑋(𝑓)|% is the energy spectral density as we have seen before. So, it is true, the 
Fourier transform of the autocorrelation is the energy spectral density.  
As we have seen the Autocorrelation function gives us the intuition of how the 
information is distributed in time in our signal. This result shows that the concept of 
information is strictly related to the concept of energy. 
Let’s compute the energy spectral density of the signal: 
 

𝑥(𝑡) = 𝑉/𝑒
# (
-! 

 

One way could be to compute the Fourier transform of the autocorrelation. We 
already computed the energy autocorrelation before, it is: 

 

𝐾,,,(𝜏) =
𝑉/%𝑇/
2 𝑒

#|1|
-!  

  
Computing this Fourier transform, we proved that the Fourier transform of the 
autocorrelation is just |𝑋(𝑓)|%. Indeed, we know that the impulse response of a single 
pole system with time constant 𝑇/ is an exponential. Then we can immediately say 
that the Fourier transform of 𝑥	has the form: 
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𝑋(𝑓) =
𝐴

1 + 𝑗 𝑓𝑓/

 

  

 in which 𝑓/ =
)

%&-!
. We can find the constant 𝐴 using the properties of the Fourier 

transform. In particular the value in zero of the Fourier transform is the integral of 
the function in time thus directly obtaining 
 

𝐴 = &
!"

.
𝑉/𝑒

# (
-!𝑑𝑡 = 𝑉/𝑇/ 

 

 So we get, for the energy spectral density: 
 

𝑆,(𝑓) = |𝑋(𝑓)|% =
(𝑉/𝑇/)%

1 + (𝑓𝑓/
)%

 

The plot is reported in figure 2.12. The reader can check that 𝐸 = ∫!"#" 𝑆,(𝑓)𝑑𝑓 by 
direct computation of the integral.  
Figure 2.12. 

 
Inequalities related to Auto and Cross Correlation: 
Let’s consider a real signal 𝑥(𝑡), and consider its autocorrelation 𝐾,,,(𝜏). We know 
that for 𝜏 = 0 we obtain the energy of the signal 𝑥(𝑡). What happens for 𝜏 ≠ 0? Will 
we get a larger or lower value? Intuitively we expect to have a lower value, since the 
correlation operation has the intuition of giving the degree of similarity. We 
obviously expect that the maximum degree of similarity is obtained when we 
compare the waveform 𝑥(𝑡) with itself. As we consider 𝜏 ≠ 0 we are comparing 𝑥(𝑡) 
with itself shifted and so we expect a lower degree of similarity. It is possible to prove 
that: 

𝐾,,,(𝜏) ≤ 𝐾,,,(0) 
 
and: 

𝐾',+(𝜏) ≤ X𝐾','(0)𝐾+,+(0) 
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2.10 Power of a signal, time and frequency domain view 
So far, we considered signals with finite energy. Obviously, there are also signals 
with infinite energy: for instance, the simplest case is a constant signal. Is it 
physically possible to have a diverging energy?  
Let’s consider an infinite energy signal. If we look at it for a finite amount of time 
obviously it will have a finite energy. The idea could be to understand which is the 
"flow" of energy per unit time. In order to do that we can look at the signal for a finite 
amount of time 𝑇, compute the energy and divide by the time of observation 𝑇. We 
expect that, if we repeat this procedure for increasing values of 𝑇, the resulting limit 
will give us the intuition of energy per unit time related to the signal. In this way, we 
can define the Power for an infinite energy signal as: 
 

𝑃[𝑥(𝑡)] = lim
-→!"

1
𝑇&

-
%

#-%

𝑥(𝑡)%𝑑𝑡 

 

Signals with finite power are called power signals. We can write the definition of 
power in a more compact way defining the so called truncated signal starting from 
𝑥(𝑡):  

𝑥-(𝑡) = ]
𝑥(𝑡) |𝑡| <

𝑇
2

0 |𝑡| >
𝑇
2

 

 

with this definition we can rewrite the power as : 
  

𝑃[𝑥(𝑡)] = lim
-→!"

1
𝑇 𝐸[𝑥-(𝑡)] 

  
2.11 Frequency domain interpretation of power 
Let’s try to give an intuitive view of power in frequency domain. The idea can be to 
use the concept of truncated signal we already saw. Truncated signals are always 
finite energy signals, so we can apply all the theory we developed for finite energy 
signals. If 𝑥(𝑡) is a non-periodic signal and 𝑥-(𝑡) is the truncated signal as we 
previously defined, we can write: 
 

𝐸[𝑥-(𝑡)] = &
!"

#"
|𝑋-(𝑓)|%𝑑𝑓 

  
 in which 𝑋-(𝑓) is the Fourier transform of 𝑥-(𝑡) and then |𝑋-(𝑓)|% is the density of 
energy. Since we know that, for the signal 𝑥(𝑡) we can write: 
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𝑃[𝑥(𝑡)] = lim
-→!"

1
𝑇 𝐸[𝑥-(𝑡)] = &

!"

#"
lim
-→!"

1
𝑇 |𝑋-(𝑓)|

%𝑑𝑓 

  
So, it makes sense to define the power spectral density at the frequency 𝑓 as: 
 

𝑆,(𝑓) = lim
-→!"

1
𝑇 |𝑋-(𝑓)|

% 

In this way: 
 

𝑃[𝑥(𝑡)] = &
!"

#"
𝑆,(𝑓)𝑑𝑓 

 
The physical interpretation of the function 𝑆,(𝑓) is the density of power at the 
frequency 𝑓 of our initial signal. In particular multiplying 𝑆,(𝑓) by a small frequency 
interval Δ𝑓 we obtain the power content of our signal in the frequency interval 𝑓, 
𝑓 + Δ𝑓.  
The procedure we followed is intuitive. Using truncated functions, we have found a 
succession of functions 𝑥-(𝑡) that converges to our function 𝑥(𝑡). These functions 
are all finite energy signals, so the concept of energy spectral density is properly 
defined, and also Parseval relation holds. Since we are interested in the power content 
of our final signal we can define, for each of these truncated functions, the power 
content at frequency 𝑓 simply dividing their energy spectral density by the time 𝑇 of 
their duration. Then, making 𝑇 → +∞ we obtain the concept of power spectral 
density for our function 𝑥(𝑡). 

 
2.12 Extension of the Cross-correlation to Power signals 
As we have seen, the concept of correlation that we have used so far is well defined 
only for energy signals. Is it possible to generalize it to power signals? As we have 
done before, we can convert the operation of integral between −∞ and +∞ into a 
time average. In this way we get a definition of cross correlation for two real power 
signals 𝑓 and 𝑔:  
 

𝐾',+(𝜏) = lim
-→!"

1
𝑇&

!-%

#-%

𝑓(𝛼)𝑔(𝑡 + 𝛼)𝑑𝛼 

  

This can be also written in terms of the time average operation we introduced before:  
  

𝐾',+(𝜏) =< 𝑓(𝛼)𝑔(𝑡 + 𝛼) > 
  
We will call this operation power cross-correlation. If 𝑓 = 𝑔 we will define it as 
power auto-correlation. Obviously, all the properties we showed for the energy 
correlation holds for the power correlation. For instance, the inequalities and the 
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symmetry properties still hold. We can notice that the power auto-correlation of the 
power signal 𝑥(𝑡) for 𝜏 = 0 is the power:  
 

𝐾,,,(0) = lim
-→!"

1
𝑇&

!-%

#-%

𝑥%(𝛼)𝑑𝛼 = 𝑃[𝑥(𝑡)] 

 

What about the Fourier transform of the power autocorrelation? We can do a trick. 
We can observe that, if 𝑥(𝑡) is a power signal, its truncated signal 𝑥-(𝑡) is an energy 
signal. Moreover, if we look at the power autocorrelation of 𝑥(𝑡) we can write: 
 

𝐾,,,(𝜏) = lim
-→!"

1
𝑇&

!-%

#-%

𝑥(𝛼)𝑥(𝜏 + 𝛼)𝑑𝛼 = lim
-→!"

1
𝑇&

!"

#"
𝑥-(𝛼)x-(𝜏 + 𝛼)𝑑𝛼 

 

where we used the fact that the truncated signal is null for |𝑡| > -
%
 to extend the 

integral to all the real line (the reader can prove that the last equality holds only 
because there is the limit, while is it not true if we remove the limit.).  
We notice that the last integral can be seen as the energy correlation of the signal 
𝑥-(𝑡). So if we take the Fourier transform of the previous equation, and using the 
fact that the Fourier transform of an energy correlation is the energy spectral density 
we obtain: 

ℱ[𝐾,,,](𝑓) = ℱ[ lim
-→!"

1
𝑇&

!"

#"
𝑥-(𝛼)𝑥-(𝜏 + 𝛼)𝑑𝛼] =

lim
-→!"

1
𝑇ℱ[&

!"

#"
𝑥-(𝛼)𝑥-(𝜏 + 𝛼)𝑑𝛼](𝑓) = lim

-→!"

1
𝑇 |𝑋-(𝑓)|

%
 

 
where 𝑋-(𝑓) is the Fourier transform of the truncated signal. We can recognize that 
the term lim-→!"

)
-
|𝑋-(𝑓)|% is the definition of power spectral density. So we obtain 

that the Fourier transform of the power auto-correlation is the power spectral density 
𝑆,(𝑓):  

ℱ[𝐾,,,](𝑓) = 𝑆,(𝑓) 
  
This is analogous to what we proved in the case of the energy correlation. 
  



    CHAPTER      3 

Noise Description 
 
To properly carry out a measurement, we must take into account not only signal but 
also noise. The presence of noise limits the system resolution. Therefore, it is 
necessary to deeply understand what noise is and how it is generated. This chapter 
provides the mathematical description of noise, that is a key tool to describe, 
analyze and deal with this phenomenon. 
 
 
3.1 Introduction 
A generic measurement system can be schematically represented by a chain of 
blocks, each one representing a specific operation or device. In figure 3.1 we can 
see a typical set-up for sensor-based measurements, in which four main blocks are 
sketched: a sensor, a preamplifier, a filtering block and a meter.  
First of all, the sensor transduces the physical variable of interest into an electrical 
quantity. Knowing the relationship between the variable to be measured and the 
electric output signal is necessary to recover the information. Typically, a linear 
input/output correspondence is preferable, since it allows the direct computation of 
the physical quantity by simply multiplying the electrical output by a transduction 
factor.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Diagram of a typical measurement set-up. 
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The second stage of the acquisition chain is typically an amplification block, which 
is needed to make the signal level sufficiently high to be read by the following 
stages. This block is called preamplifier, and, in some cases, it could be also the 
sensor front end.    
As highlighted in figure. 3.1, at the preamplifier output we typically have a 
significant noise level superimposed to the signal, which is due to sensor intrinsic 
noise and to noise limitations of the gain stage. This explains why, after the 
preamplifier, we typically find a filtering block. The task of the filtering stage is 
shaping noise and signal to improve the Signal-to-Noise Ratio (SNR).  
Finally, the last block is constituted by meter circuits.  
It is worth noting that the noise of the two last blocks can be typically neglected in 
a well-designed system, while we must pay attention to noise coming out from the 
first two blocks.  
After these practical considerations we can more easily understand noise effects on 
a measurement and we can also try to give some qualitative definitions: noise can 
be described like random disturbances which are superimposed to a useful signal 
and tend to obscure its information content, thus degrading the quality of the signal. 
These unwanted fluctuations are generated randomly within the devices themselves 
and they may limit the resolution of the detection system. Therefore, in a 
measurement system it’s fundamental to reduce the noise contribution. 
In conclusion, we can summarize this introductive discussion stating that acquiring 
signals means to recover information from noise. This explains why it’s so 
important to properly deal with noise to perform a correct measurement.  
 
 
3.2 Statistics of noise samples and probability distribution 
Using an oscilloscope, it is possible to look at noise waveforms in time in a real 
acquisition system. Depending on what kind of noise we are dealing with, we can 
visualize different noise shapes on the oscilloscope screen; some examples are 
sketched in the fig. 3.2. 
 

 
Figure 3.2 Noise waveforms on the oscilloscope screen (50µs/div). From left to right we can see a 
typical white noise waveform (spectrum S=constant), a typical random-walk noise waveform (spectrum 
S=1/f 2 ) and a typical flicker noise waveform (having a spectrum dependence S=1/f ). 
 
Looking at noise waveforms in time, we can evaluate the noise amplitude at a 
particular time instant t1: we will call it x(t1).  
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Performing this measurement on many identical devices, as shown in figure 3.3, we 
can sample different noise amplitudes x(t1), ending up with a set of different values, 
that give us an ensemble of noise waveform amplitude.  

 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 3.3 Noise waveforms ensemble coming from sampling equal noise sources at the same t1 
 
Once we have sampled the noise amplitude x(t1) at the particular time instant t1, we 
can then compare this value to a scale of discrete values xk, spaced by constant 
interval Δx and classify this sampled value at the nearest value xk of the scale. 
Observing a high number of noise waveforms N and calling ΔNk the number of 
sampled waveforms classified at xk we can define the statistical frequency of the 
amplitude xk as the ratio: 

 ∆𝑓5 =
∆𝑁5
𝑁  

 
 

 

 
Figure 3.4 Noise samples amplitude classification. 
 
Using this procedure, we collect N values of x(t1) in N different waveforms. Then 
we define ΔN0 as the number of occurrences in Δx around x=0, ΔN1 the number of 
samples classified in the first Δx centered in x1 and so on, up to ΔNk (that is the 
number of samples classified in the k-th Δx centered in xk=Δxk). We can evaluate 
the k-th statistical frequency and build a histogram of the measured x values, as 
sketched on the left part of Fig. 3.5. 
Moving to differentials, so ∆𝑥 → 𝑑𝑥, we get for an infinitesimal variation 𝑑𝑥: 
 

 ∆𝑁! → 𝑑𝑁! = 𝑛(𝑥!)𝑑𝑥 
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hence for ∆𝑓! → 𝑑𝑓! we obtain  

For 𝑁 → ∞ we can explicit the last equation in this way  
 𝑑𝑓5 =

𝑛(𝑥5)
𝑁 𝑑𝑥 = 𝑝(𝑥)𝑑𝑥 

 
 

where the ratio "($!)
&

 is called probability density 𝑝(𝑥) of x values. 
 
 
	 
  
 
                                                                            
 
 
Figure 3.5 On the left: histogram of measured x values. On the right: probability density 𝑝(𝑥) of x 
values. 
 
More in general, we may have two kind of probability noise densities: it may be 
constant in time or it may be varying in time. In the first case we call the noise 
stationary, having 𝑝 = 𝑝(𝑥), while in the second case, a probability density that 
varies over time gives origin to a non-stationary noise, having 𝑝 = 𝑝(𝑥, 𝑡). 
At this point of our discussion, the reader may be induced to think that knowing the 
probability density corresponds to having a complete mathematical description of 
noise behavior. However, the question is subtle and a bit misleading because 
probability density alone does not give us a complete description of the noise. In 
fact, different cases can have equal probability density.  
Let’s use an example to better explain this concept. Let’s observe the output 
waveforms of two different sets of amplifiers, one composed by noisy elements (set 
A) and the other one composed by low-noise amplifiers (set B). Consider having a 
stationary noise with a probability density 𝑝'(𝑥) in set A and a random baseline 
offset with probability density 𝑝((𝑥) in set B. 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 Output noise evaluation at time instants t1 and t2 on two different sets of amplifiers. On the 
left, case A: noisy amplifiers; on the right, case B: set of low-noise amplifiers. 

 𝑑𝑓! =
𝑑𝑁!
𝑁 =

𝑛(𝑥!)
𝑁 𝑑𝑥  
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In set A, if we evaluate the outputs noise amplitude at two different time instants t1 
and t2, we end up with two random values, respectively x(t1) and x(t2) having the 
same probability density 𝑝'(𝑥). Now, if we call τ the time interval between t1 and t2 
(𝜏 = 𝑡) − 𝑡*) and we study x(t1) and x(t2) as a function of τ, we end up with some 
properties of the sampled values, related to the interval τ. In particular, we can see 
that, for each source, x(t1) and x(t2) are practically identical for an ultra-slow interval 
τ, they are somewhat different for a short τ, while they become more and more 
different as we progressively increase the time interval τ. 
Considering the amplifiers of set B, instead, the situation is totally different. 
In this case, if we sample the output waveform at two different time instants t1 and 
t2, we still have that both x(t1) and x(t2) are random values with a probability density 
𝑝((𝑥), but now if we compare x(t1) and x(t2) sampled on the same amplifier, we see 
that they are identical for any time distance τ between t1 and t2. In other words, the 
value of the amplifier output in set B is different from component to component 
(following a statistical fluctuation), but for each amplifier the output is constant 
over time. 
A time-constant value at the output is called offset or baseline. Offset is completely 
different from noise, but they may look the same if we only study the probability 
density. Hence, we need other tools to fully describe noise. 
 
3.3 Complete noise description with probability distribution 
To fully describe noise in a proper way, as underlined at the end of the last paragraph, 
the marginal probability 𝑝+(𝑥, 𝑡)𝑑𝑥 of having a value x at time t is not sufficient. We 
need also to know, instead, the joint probability 𝑝,(𝑥*, 𝑥), 𝑡*, 𝑡))𝑑𝑥*𝑑𝑥) of having a 
value 𝑥* at time 𝑡* and a value 𝑥) at time 𝑡). Therefore, a full description of noise is 
obtained by knowing both the marginal probability density 𝑝+(𝑥) = 𝑝+(𝑥, 𝑡*) for 
every instant 𝑡* (that for stationary noise does not depend on time 𝑡*, i.e. 𝑝+ = 𝑝+(𝑥)), 
and also the joint probability density 𝑝,(𝑥*, 𝑥)) = 𝑝,(𝑥*, 𝑥), 𝑡*, 𝑡)) = 𝑝,(𝑥*, 𝑥), 𝑡*, 𝑡* + 𝜏) 
for every couple of instants 𝑡* and 𝑡) = 𝑡* + 𝜏. We can notice that for stationary noise 
the joint probability 𝑝, depends only on the time interval τ and not on the time 
position 𝑡*. 
 

 
 
Figure 3.7 Graphic visualization of τ on a set of noise waveforms. 
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Before going on with this discussion, it’s worth recalling some basics. First of all, 
averaging in time is different from averaging over the ensemble. To better explain 
this statement, let’s consider the experiment of the previous section where we looked 
at noise amplitude waveforms of many sources. When we average in time, we choose 
a particular waveform among all the waveforms analyzed and we calculate the 
integral ∫ $(-)

).
.
/. 𝑑𝑡 for  𝑇 → ∞. The integral over time will be referred to with the 

following notation: < 𝑥 >.  
In this way, we obtain the mean value over time, that we can consider like the 
continuous component associated to this particular waveform evolving in time.  
In summary: 

 
< 𝑥 >	= lim

-→"
&

𝑥(𝑡)
2𝑇

-

#-
𝑑𝑡 

 
 

 

 
Figure 3.8 Graphic visualization of the differences between average over time and average over the 
ensemble on a set of noise waveforms.  
 
On the other hand, when we average the amplitude x over the ensemble, we integrate 
the x variable multiplied by its probability distribution 𝑝(𝑥) from −∞ to +∞. We will 
indicate the integration result with this notation: �̅�. In formulas: 
 

 
�̅� = & 𝑥	𝑝(𝑥)𝑑𝑥

!"

#"
 

 
 

 
A “graphic explanation” of these differences, maybe more straightforward and 
intuitive, is shown in figure 3.8. 
Although this observation may seem obvious and somewhat trivial, this is a tricky  
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point and it’s fundamental to keep clearly in mind these formulas to better and deeply 
understand next topics. 
 
3.3 Noise description with 2nd order moments of PD  
A fundamental way to describe noise is using the 2nd order moment of the probability 
density. Let’s recall some statistical definitions.  
Given any two statistical variables x and y, we define moments of a marginal 
probability distribution p(x) 

 
𝑚6 =	𝑥6ggg = & 𝑥6𝑝(𝑥)𝑑𝑥

!"

#"
 

 
 

 
and moments of a joint probability distribution p(x,y) 
 

 
𝑚$5 =	𝑥7𝑦5gggggg = & 𝑥$𝑦5𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦

!"

#"
 

 
 

 

Moments mn and mjk give the information on the features of the marginal and joint 
probability distributions, respectively. In particular, the higher the order n or j+k, the 
more detailed is the information. 
If we consider a description of noise limited to the 2nd order moment we obtain the 
so-called mean square value or variance, considering the only marginal p(x)  
 

 
𝑚% =	𝑥%ggg = & 𝑥%𝑝(𝑥)𝑑𝑥

!"

#"
= 𝜎,% 

 
 

 

In case of a joint p(x,y), the 2nd order moment is called mean product value or 
covariance of x and y  

 
𝑚)) =	𝑥𝑦ggg = & 𝑥𝑦𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦

!"

#"
= 𝜎,8% 

 
 

 

Concerning noise, we can evaluate the mean square value of noise amplitude 
waveform when sampled at a generic time instant t1  
 

 𝑥%(𝑡))gggggggg = 𝜎,%(𝑡)) 
 

 

which does not depend on t1 in the case of stationary noise. 
For any pair of time instants t1 and t2=t1+τ (look at figure 3.6 for a graphic 
visualization) it’s possible to calculate the mean product  
 

 𝑥(𝑡))𝑥(𝑡%)ggggggggggggg = 𝑥(𝑡))𝑥(𝑡) + 𝜏)gggggggggggggggggg  
 
which, for stationary noise, depends only on the time interval τ and not on the time 
position t1. 
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3.4 Noise autocorrelation function and noise power  
We will now introduce a key tool for noise description: the noise autocorrelation 
function. It is defined in this way 
 

 𝑅,,(𝑡), 𝑡) + 𝜏) = 𝑥(𝑡))𝑥(𝑡) + 𝜏)gggggggggggggggggg  
 
where we have expressed t2 as t2=t1+τ. 
We can notice that the noise autocorrelation function is always function of the 
interval τ between the two instants t1 and t2. Furthermore, it is also a function of t1 in 
the case of non-stationary noise. 
At this point it’s worth pointing some differences between signal and noise 
autocorrelation functions. The autocorrelation function of a noise x, called Rxx(τ), 
is an ensemble average, while for a signal x the autocorrelation function Kxx(τ) is 
a time average. 
Another important definition is that the noise mean square value is also called noise 
power and it corresponds to the autocorrelation function at τ=0 
 

 𝑥%(𝑡)ggggggg = 𝑅,,(𝑡, 0) 
 
For stationary noise, we see that the autocorrelation function for τ=0 is constant at 
any t, therefore, using the same definition above introduced, it is 
 

 𝑥%ggg = 𝑅,,(0)  
 
3.5 Noise power spectrum  
Finally, the noise power spectrum is defined in this chapter. We can start our 
discussion saying that noise has power-type waveforms, having divergent energy. 
Furthermore, considering the whole ensemble, we have statistical variations from 
waveform to waveform. We can extend the concepts of power and power spectrum 
that we defined for a generic signal by adding the ensemble average. In other words, 
the power of a noise signal is defined as the ensemble average of the power of a noise 
waveform: 
 

 
𝑃 = lım

-→"
&

𝑥%(𝛼)
2𝑇 𝑑𝛼

-

#-

gggggggggggggggggggggg
 

 
 

 
In order to apply the Parseval’s theorem, we must change the extremes of integration. 
In fact, we remind the reader that Parseval’s theorem is valid only for the entire 
integral calculated from −∞ to +∞ and not for the truncated integral evaluated in ±𝑇. 
Hence, we introduce the truncated waveform xT(α) and we change the extremes of 
integration  
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𝑃 = lım

-→"
&

𝑥-%(𝛼)
2𝑇 𝑑𝛼

!"

#"

ggggggggggggggggggggggggg
 

 
 

 
Applying now Parseval’s theorem we get 
 

 
lım
-→"

&
𝑥-%(𝛼)
2𝑇 𝑑𝛼

!"

#"

ggggggggggggggggggggggggg
= lım

-→"
&

l𝑋-%(𝑓)l
2𝑇 𝑑𝑓

!"

#"

ggggggggggggggggggggggggggg
 

 
 

 
Moving the limit into the integral and then average operator into the limit operator 
we get 

 
lım
-→"

&
l𝑋-%(𝑓)l
2𝑇 𝑑𝑓

!"

#"

ggggggggggggggggggggggggggg
= & lım

-→"

l𝑋-%(𝑓)l
2𝑇 𝑑𝑓

ggggggggggggggggggggg!"

#"
=

= & lim
-→"

l𝑋-%(𝑓)lggggggggggg

2𝑇 𝑑𝑓
!"

#"
 

 
 
 

 

 
We define the power spectrum of the noise as 
 

 
𝑆,(𝑓) = lim

-→"

l𝑋-%(𝑓)lggggggggggg

2𝑇  
 

 
 
Hence the noise power is 

 
𝑃 = & 𝑆,(𝑓)𝑑𝑓

!"

#"
 

 
 

 
By averaging over the ensemble, we can extend to noise also the second definition 
of power spectrum introduced for the signals 
 

 𝑆,(𝑓) = 𝐹[𝐾,,(𝜏)]ggggggggggggg = 𝐹n	𝐾,,(𝜏)ggggggggg	o =

= 𝐹 p lim
-→"

∫ 𝑥-(𝛼)
"
#" 𝑥-(𝛼 + 𝜏)𝑑𝛼

2𝑇 q =

= 𝐹 r	 lım
-→"

𝐾,,,-(𝜏)
2𝑇

gggggggggggggggg
	s = lim

-→"

𝐹n	𝐾,,,-(𝜏)gggggggggg	o
2𝑇  

 
 

 

 
And so we can write the noise power as 
 

 𝑃 = 9 𝑆$(𝑓)𝑑𝑓
01

/1
= 𝐾$$(0)=========  

 
 

The last formula represents the most important result of all this chapter. Indeed, it 
will be largely used in studying noise and signal filtering.  
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Before concluding this discussion, it’s worth doing some additional observations 
on noise power spectral density. As we can see from previous formulas, the 
mathematical spectral density Sx(f) is defined over a frequency range that goes from 
–∞ to +∞, therefore we call it bilateral spectral density and we normally underline 
this adding a second subscript B to the notation in this way SxB(f). Then the noise 
power is calculated as 

 
𝑃 = & 𝑆,9(𝑓)𝑑𝑓

!"

#"
 

 
 

   
Since SxB(f) is symmetrical  𝑆$((−𝑓) = 𝑆$((+𝑓), hence we can write the noise power 
in this way 

 
𝑃 = 2& 𝑆,9(𝑓)𝑑𝑓

!"

.
= & 2𝑆,9(𝑓)𝑑𝑓

!"

.				

 
 

 

 
At this point we can define the unilateral spectral density 𝑆$2(𝑓) as 
 

 𝑆,;(𝑓) = 2𝑆,9(𝑓)  
 
This last spectral density definition is usually employed in engineering tasks for 
making computations only in the positive frequency range. Therefore, the noise 
power computed using the unilateral power spectral density definition is 
 

 
𝑃 = & 𝑆,;(𝑓)𝑑𝑓

!"

.
 

 
 

 
Finally, a last observation remains to be pointed out. From the previous equation 
we have 

 𝑆,(𝑓) = 𝐹[𝐾,,(𝜏)]ggggggggggggg  
   

We notice that 𝐹[𝐾$$(𝜏)]============= results from a double average: the first over the time 
 

 𝐾,,(𝜏) =< 𝑥(𝜏)𝑥(𝑡 + 𝜏) >  
 
and then over the ensemble.  
It can be demonstrated that the order of averaging can be exchanged, as reported in 
the appendix section at the end of this chapter. 
As a result, the power spectrum is related to the ensemble autocorrelation function 
in this way: 

 𝑆,(𝑓) = 𝐹[< 𝑅,,(𝑡, 𝑡 + 𝜏) >]  
 
Where 𝐾,,has been replaced with 𝑅,,. 
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For non-stationary noise Sx(f) can be defined with reference to the time-average of 
the ensemble autocorrelation function of noise. 
For stationary noise instead, there is no need of time averaging, in fact it is simply 
   

 < 𝑅,,(𝑡, 𝑡 + 𝜏) >	= 𝑅,,(𝜏)  
 
Therefore 

 𝑆,(𝑓) = 𝐹[𝑅,,(𝜏)]  
 
 
3.6 Appendix  
 
Here we will simply demonstrate that the order of time-averaging and ensemble-
averaging can be exchanged in the definition of noise power spectrum.  
So, let’s verify that  

 
We have that 

 
 

 

 

 

 

 

 

 

 

 

 𝐾,,(𝜏)ggggggggg =	< 𝑅,,(𝑡, 𝑡 + 𝜏) >  

 
𝐾,,(𝜏)ggggggggg = lım

-→"
&

𝑥(𝛼)𝑥(𝛼 + 𝜏)
2𝑇 𝑑𝛼

-

#-

gggggggggggggggggggggggggggggggg
=

= lim
-→"

&
𝑥(𝛼)𝑥(𝛼 + 𝜏)ggggggggggggggggg

2𝑇 𝑑𝛼 =
-

#-

= lim
-→"

&
𝑅,,(𝛼, 𝛼 + 𝜏)

2𝑇 𝑑𝛼 =
-

#-
= < 𝑅,,(𝑡, 𝑡 + 𝜏) > 
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    CHAPTER      4 

Noise types and sources 
 
We define noise the statistical contribution coming from our system that sums up 
with the signal, while we define as disturb any other contribution coming from 
outside the system. In this chapter we will focus our attention on the noise, 
discussing its characteristics and its contributions due to both the sensor and the 
electronics. 
 
4.1 Introduction 
In the previous chapter, we have seen how to analytically describe the noise in the 
time domain with the autocorrelation function and in the frequency domain with 
power spectral density.  
In this chapter, we will analyze more in detail the physical origin of different noise 
sources. In the first part we will study the autocorrelation function and the power 
spectral density for the most common types of noises: the shot noise and the 
Johnson-Nyquist noise. Finally, in the last part we will define what is white noise. 
Our final goal is to find the rms value of the noise: in fact, in the end we want to 
know what the minimum detectable signal of the system is, and it can be written as: 
 

𝑉/<=6 = 𝑆𝑁𝑅<=6 ⋅ 𝜎6 
 
Normally, the minimum value of a usable SNR is considered to be 3. However, for 
simplicity we will consider the minimum SNR=1, in this way we are assuming that 
the minimum detectable signal is the one equal to the standard deviation of the 
noise. Clearly, this is more a convention than a practical value.  
This concept will be explained better in the next chapters; at the moment we just 
want to underline that a critical part of our acquisition stage is to understand the 
variance of the noise. To do that we need to compute the power spectral density and 
the autocorrelation function of the noise. 
 
4.2 Shot noise  
The shot noise is a kind of noise present when we have random fluctuations of the 
current value due to the discrete variations of the carriers moving under the effect of 
the electric field. 
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For example, considering a reverse biased p-n junction, one carrier reaching the 
depletion layer will cross this region under the effect of the electric field, and it will 
move in an almost straight line due to the high electric field; the number of carriers 
crossing the junction could have a constant average value but it has also an intrinsic 
variation due to the discrete nature of the carriers. 
We can study the total current in our device studying the behavior of each single 
pulse due to a single carrier. At the moment, let’s use for this pulse an exponential 
decay.We know that the integral of the current pulse f(t) in time is the charge of the 
carrier, which is the elementary charge q, so we can rewrite the pulse in order to 
highlight h(t), a pulse with unitary area. 
 
 

 
Figure 4.1 Exponential shape of the pulse 
 
The sequence of pulses crossing the depleted region is a Poisson statistical process, 
since every pulse is independent from the other. 
The probability of having a pulse in the interval t+dt is p·dt where p is constant.  
 
4.2.1 Shot noise mean 
We can then calculate the current at a generic time t as given by the sum of all the 
contribution of the pulses started before the time t, as represented in figure 4.2. 
If the pulse has started far away in time its contribution will be negligible compared 
to one that has just started, given the exponential shape of the pulse itself. 

 
Figure 4.2 Contribution of pulses in time 
 
To compute the average current, let’s change the variable of integration: we 
introduce a new axis α which is flipped compared to the original one and has the 
zero value in correspondence of the time of measurement of the current. 

 
Figure 4.3 Contribution of the pulses on the axis α 
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A pulse which starts at time alpha contributes a current q·h(α) at time t. The 
probability that a pulse starts in αà α+dα is p·dα. 
The mean current in time t is so the sum of the mean effects of the pulses. 
 

𝚤(𝑡)ggggg = 𝐼 = 	& 𝑞ℎ(𝛼)	 ∙ 𝑝𝑑𝛼
"

.
= 𝑝𝑞	& ℎ(𝛼)𝑑𝛼 = 𝑝𝑞

"

.
 

 
Note that the result can be understood even without computation: we have a pulse 
with a rate p and each one has a charge q. So, the current is the product of the average 
pulse rate times the charge. 
 
4.2.2 Shot noise mean square 
Our goal is to evaluate the noise power and the power spectral density of the shot 
noise, so the next step is to compute the square value. 
The procedure is like the previous one, but we have to take in consideration two 
different pulses, and we have to evaluate the contribution of two pulses at the time t. 
The contribution of pulses to the current is: 
 

𝑖2! = "𝑞 ⋅ ℎ(𝛼) + 𝑞 ⋅ ℎ(𝛽)%2 = 
= 𝑞% ⋅ ℎ%(𝛼) + 𝑞% ⋅ ℎ%(𝛽) + 𝑞 ⋅ ℎ(𝛼) ⋅ 𝑞 ⋅ ℎ(𝛽) + 	𝑞 ⋅ ℎ(𝛼) ⋅ 𝑞 ⋅ ℎ(𝛽) 

 
Every pulse introduces two contributions: one related to itself and the other one 
related to the cross product. 
The probability of the squared pulse contribution is the same of the probability of the 
pulse itself, while the probability of the cross product is the joint probability of the 
two pulses, because both pulses must occur at the same time. Since the pulses are 
independent from each other, the joint probability is just the product of the two 
probabilities.  
 
Now we can do the integral to calculate the squared current: 
 

𝚤%(𝑡)gggggg = 	& 𝑞%ℎ%(𝛼)	 ∙ 𝑝𝑑𝛼 +{𝑞ℎ(𝛼)	𝑝𝑑𝛼	𝑞ℎ(𝛽)	𝑝
"

.

𝑑𝛽 =
"

.
 

																		= 𝑝𝑞% ∫ ℎ%"
. (𝛼)𝑑𝛼 + 𝑝𝑞 ∫ ℎ(𝛼)𝑑𝛼	 ∙"

.  𝑝𝑞 ∫ ℎ(𝛼)𝑑𝛼"
. = 

																 = 𝑝𝑞% ∫ ℎ%"
. (𝛼)𝑑𝛼 + (𝑝𝑞)% = 𝑝𝑞% ∫ ℎ%"

. (𝛼)𝑑𝛼 + (	𝚤(𝑡)ggggg	)% = 
       									= 𝑝𝑞% ∫ ℎ%"

. (𝛼)𝑑𝛼 + 𝐼% 
 
The result is the sum of the average value squared and another term. For our studies 
we are interested in the fluctuations of the current around the nominal value, so we 
can subtract the average squared value and we analyze the remaining term. 
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𝑛?%gggg	 = 𝚤%(𝑡)gggggg	 − 	|	𝚤(𝑡)ggggg	}% = 	𝑝𝑞% ∫ ℎ%"

. (𝛼)𝑑𝛼 = 
 

𝒏@𝟐gggg = 	𝒒𝑰& 𝒉𝟐
"

𝟎

(𝜶)𝒅𝜶 

 
This formula is the result of the Campbell Theorem and it gives us a direct 
relationship between the power of the noise and the shape of the delta response of the 
system. It is important to notice that we used the exponential decay time just to have 
a graphical example of pulse shape, but the obtained result is totally independent 
from the shape of the pulse and it can be extended to all the cases. 
 
4.2.3 Power spectrum 
Observing that the function h(α) is null for α negative (when α is negative, t is greater 
than tm, the time in which we are evaluating the current so there cannot be any 
contribution), we can then rewrite the Campbell Theorem in this form: 
 

𝑛?%gggg	 = 		𝑞𝐼 & ℎ%
"

.

(𝛼)𝑑𝛼	 = 		𝑞𝐼 & ℎ%
"

#"

(𝛼)𝑑𝛼 

 
we define H(f) as the Fourier transform of the pulse h(t) 
 

𝐻(𝑓) = 𝐹[ℎ(𝑡)] 
 
Thanks to the Parseval Theorem, we can rewrite the formula in the frequency domain 
 

𝑛?%gggg = 𝑞𝐼 ∫ ℎ%"
#" (𝛼)𝑑𝛼= 𝑞𝐼 ∫ |𝐻(𝑓)|%"

#" 𝑑𝑓 
 
From the noise theory we know that         
 

𝑛?%gggg = & 𝑆6(𝑓)𝑑𝑓
"

#"

 

 
By matching the latter formula with the result of the Campbell theorem we can 
assume that  
 

𝑺𝒏(𝒇) = 𝒒𝑰	|𝑯(𝒇)|𝟐 
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Pay attention, matching the two integrals is not enough to find the expression of Sn(f). 
Indeed, there can be an infinite number of different functions that have the same 
integral from minus to plus infinite. To demonstrate that Sn(f) is the value we found, 
we should need to compute the autocorrelation of the current. 
 
Remarks on the Fourier transform. 
Be careful, the variable α is not the variable t, so in principle we should compute the 
Fourier transform of h(α). Let’s analyze alpha: we introduced the variable alpha as 
tm-t, so we have a time shifting and multiplication by -1. 
 

α = -(t-tm) 
 
By the properties of the Fourier transform, we know that the effect of the time shifting 
is a phase shift in frequency, but we don’t mind here since we are interested in the 
absolute value. Moreover, the multiplication by -1 gives a flipped Fourier transform, 
but h(t) is real so |H(f)| is pair. For these reasons we can say that the Fourier transform 
of h(α) is the same of h(t). 
 
 
4.2.4 Autocorrelation function of the current 
 

 
 
 
 
 
 

Figure 4.4 Contributions of more pulses at time t and t+τ 
 
By definition the autocorrelation of the current is given by the following formula: 
 

 
 

The current contributions in both time intervals are: 
 

𝑖(𝑡) = 𝑞ℎ(𝛼) + 𝑞ℎ(𝛽) 
𝑖(𝑡 + 𝜏) = 𝑞ℎ(𝛼 + 𝜏) + 𝑞ℎ(𝛽 + 𝜏) 

 
The procedure is similar to the one used to compute the mean square of the current. 
The multiplication between the current consists of two types of terms, the first one 
being a square contribution of each pulse individually and the second one a cross-
product contribution between a pair of pulses 
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𝑞ℎ(𝛼) ⋅ 𝑞ℎ(𝛼 + 𝜏)  and  𝑞ℎ(𝛼) ⋅ 𝑞ℎ(𝛽 + 𝜏) 
 
The probability of the square contribution is the probability that the single pulse 
exists p·dα, while the probability of the cross-product contribution is the probability 
of the two pulses to exist p·dα · p·dβ. 
To compute the autocorrelation, we have to do the ensemble average of  𝑖(𝑡)𝑖(𝑡 + 𝜏). 

 
𝑅==(𝜏) = 𝚤(𝑡)𝚤(𝑡 + 𝜏)ggggggggggggggg = 

= 	& 𝑞%ℎ(𝛼)ℎ(𝛼 + 𝜏)	𝑝𝑑𝛼 + {𝑞ℎ(𝛼)	𝑝𝑑𝛼 ∙ 𝑞ℎ(𝛽 + 𝜏)	𝑝
"

#"

𝑑𝛽 =
"

#"
 

 
							𝑅==(𝜏) = 𝑝𝑞% ∫ ℎ(𝛼)ℎ(𝛼 + 𝜏)	𝑑𝛼"

#" + 𝑝𝑞 ∫ ℎ(𝛼)𝑑𝛼	 ∙"
#"  𝑝𝑞 ∫ ℎ(𝛽 + 𝜏)𝑑𝛽"

#" = 

= 𝑝𝑞%& ℎ(𝛼)ℎ(𝛼 + 𝜏)
"

.

𝑑𝛼 + (𝑝𝑞)% = 

= 	𝑝𝑞%& ℎ(𝛼)ℎ(𝛼 + 𝜏)
"

.

𝑑𝛼 + (	𝚤(𝑡)ggggg	)% = 

= 𝑞𝐼& ℎ(𝛼)ℎ(𝛼 + 𝜏)
"

.

𝑑𝛼 + 𝐼% 

We are interested in finding the autocorrelation of the noise, not the autocorrelation 
of the whole current. We know that the noise is defined as the random fluctuation 
around the average value. 
 

𝑛=(𝑡) = 𝑖(𝑡)	 − 𝚤(𝑡)ggggg = 𝑖(𝑡)	 − 𝐼 
 
To compute its autocorrelation, we subtract the average squared value from the 
autocorrelation of the current and we end up with the following result 

 
𝑅66(𝜏) = 𝑅==(𝜏)	 − 	|	𝚤(𝑡)ggggg	}% = 𝑅==(𝜏)	 − 	𝐼% = 

= 𝑞𝐼 ∫ ℎ(𝛼)ℎ(𝛼 + 𝜏)"
. 𝑑𝛼 

 
 

𝑅66(𝜏) = 𝑞𝐼	𝑘DD(𝜏) 
 

To find the power spectral density we need to apply the Fourier transform to the noise 
autocorrelation. 

 
𝑆6(𝑓) = 𝐹[𝑅66(𝜏)]  𝑆6(𝑓) = 𝑞𝐼|𝐻(𝑓)|% 
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4.2.5 Autocorrelation function 
It has been demonstrated that the autocorrelation function is the inverse Fourier 
transform of the power spectral density. 
 

 
 
We can then use this result to compute the power of the noise also in the time domain: 
 
 

∫ 𝑆6(𝑓)𝑑𝑓
"
#" = 𝑛?%gggg = 𝑝𝑞% ∙ 𝑘DD(0) = 	 𝑞𝐼 ∫ ℎ%"

. (𝛼)𝑑𝛼 
 
4.3 Noise in diodes 
 
4.3.1 Noise in reverse biased diode 
When the diode is reverse biased, we have a higher voltage drop across the depletion 
region. The only contribution to the current is given by the minority carriers that fall 
down the potential barrier and cross the junction 
 

 
Figure 4.5 p-n junction in reverse bias and potential profile 
 
We can then model the current as a sequence of elementary pulses: the pulse width 
will be related to the transit time in the junction. 
The transit time of the carriers in the depletion region is the ratio between depletion 
length and speed. The depletion length ranges from 0.1μm to 100μm, so the transit 
time will range from a few ps to 1ns.  
For most of our applications, we are interested in frequencies up to the MHz range, 
which means that the correlation times is in the order of microseconds. Since the 
shape of the current pulse is much shorter, it can be considered a δ for our studies. 
 

h(t)≈δ(t)     and        |H(f)|≈1 
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With this approximation the noise spectrum is: 
 
  SnB(f) = qIs·|H(f)|2   ≈   qIs            bilateral power spectral density       

 
  SnU(f) = 2qIs·|H(f)|2 ≈ 2qIs               unilateral power spectral density 
 
Therefore, the corresponding autocorrelation function is δ-like: 
 

Rnn(τ) = qIs·khh(τ) ≈ qIs·δ(τ) 
 
4.3.2 Noise in forward biased diode 
The current flowing in the diode in forward regime is composed by two contributions: 
the majority carriers that cross the potential barrier and the minority carriers that fall 
down the potential barrier. 
Differently from the reverse bias condition, now we are reducing the potential barrier 
and the number of holes and electrons able to jump over increases exponentially. 
 

 
 
The mean current is the difference of the two components, but the fluctuations are 
quadratically added. 
The statistic fluctuations of the noise can be either positive or negative with the same 
probability and, in order to take into account the variations, we square and then we 
sum the contributions. 

 
 
In forward bias I>>Is because the barrier is reduced, and the spectrum is 
     

SnU(f) ≈ 2qI  
 

At zero bias I=0 the minority and the majority current are equal, so the spectrum is 
       

SnU(f) ≈ 4qIs 
 
4.4 Noise in Resistors (Johnson-Nyquist noise) 
The Johnson noise, also known as thermal noise, is generated by the Brownian 
motion of the carriers. It is mainly present in resistors and transistors. 
If we analyse a floating resistor with both terminals open, we see that the voltage 
difference on the terminals is not zero, it varies from time to time. Only the average 
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value is equal to zero. The variation of the voltage value is due to the electrons 
moving randomly. In a classical model we have the electrons in the conductance band 
completely free to move within the conductor volume. It may happen from time to 
time that we have more electrons towards a terminal, making its potential to decrease, 
and fewer electrons onto the other terminal thus making its potential to increase. The 
voltage varies within a time interval tc equal to tens of femtoseconds, which is the 
collision time of the carriers. Therefore, we can consider the noise to be flat up to a 
frequency equal to 1/ tc, so in the order of THz. 
The voltage is a statistical variable with a Gaussian probability distribution.  
For our pourpose we just need to focus our attention on the power and on the spectral 
density of the noise. In order to model a noisy resistor, we put an equivalent voltage 
generator in series to a noiseless resistor, and the voltage generator power equals the 
power spectral density of the resistor. 
The voltage spectral density is  
 

𝑆E9(f) = 	2kTR 
 
Sometimes it is useful to deal with currents, so we can also model the noise with an 
equivalent current generator in parallel to the resistor, its value is simply given by  
 

𝑆E9(𝑓)
𝑅%  

 
This is equivalent to move from a Thevenin equivalent circuit to a Norton equivalent 
circuit; the only difference is that we are dealing with power spectral density and 
therefore the transfer functions are squared. 
 
 
 
 
 
 
     
Figure 4.6 Equivalent resistors with voltage and current noise generator 
 
4.5 White Noise  
By definition, white noise is a particular kind of noise that has a constant power 
spectral density.  
The term white is a recall to the white visible light, which is given by the sum of all 
the frequencies of the visible range with the same weight. 
The autocorrelation function of the white noise is a δ in the origin. This is because 
the autocorrelation is the inverse Fourier transform of the power spectral density. 
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Figure 4.7 White noise autocorrelation function and power spectral density 
 
In real world, an ideal white noise does not exist. Indeed, analysing it in the frequency 
domain we know that the integral of the power spectral density from minus infinite 
to plus infinite is the noise power, and clearly for the ideal white noise this integral 
does not give a finite result. This means that the power noise is infinite and therefore 
the noise has an infinite rms value which will give in any case an SNR equal to zero. 
At the same way in the time domain we know that the noise power is related to the 
value in zero of the autocorrelation function, but with the ideal white noise the 
autocorrelation is a delta, and so, again, its power results infinite. 
In the real world we will never have an ideal white noise, since we will always have 
a high frequency cut off. 
The autocorrelation time will be related to the current pulse duration. If we consider 
the shot noise with the pulse duration of hundreds of ps, we obtain an upper frequency 
of tens of GHz and we could consider our noise as white. 
For the Johnson-Nyquist noise the pulse lasts tens of fs, so the upper frequency is 
hundreds of THz and again we can consider the noise white. 
In general, we will consider the noise white if the upper limit is much higher than the 
frequency we are considering in our system, or, in the time domain, if the width of 
the noise autocorrelation is much shorter than the time scale we are working with. 
 
Differences between stationary and non-stationary noise 
In the previous chapter we have analysed the difference between stationary and non-
stationary noise.  
In the case of non-stationary white noise, we still have a delta autocorrelation 
function, but the power is depending on the time of measurement tm, so the Sb value 
of the power spectral density varies with tm. 
For the properties of the Fourier transform the value in the origin of the power 
spectral density is the integral of the autocorrelation function. 
It follows that the area of the autocorrelation function changes with time. 
 
 

 



 

    CHAPTER      5 

Noise analysis and 
simulation 
In this chapter, the concept of ideal white noise will be introduced and discussed 
both in time and frequency domain. We will see that white noise cannot exist in the 
real world, but it can be extremely useful to approximate very wide band noise. 
Finally, an example of noise filtering in the discrete-time domain is reported. 
 

5.1 Introduction 
In the previous chapters, noise has been discussed in terms of mathematical analysis 
and characteristics of different types of noise with their physical sources.  
Now, we want to go deeper into details of a particular type of noise: the white noise. 
Starting from an ideal case of infinite-band white noise, we will then discuss the 
more realistic case of wide-band noise, describing its characteristics and filtering 
methods 
 
5.2 White noise 
We will divide the analysis of the ideal white noise into two steps: first of all, we 
will analyze the stationary, white noise and then we will extend the definition to the 
non-stationary noise case. 
Noise is called stationary if its probability distribution is constant over time. On the 
other hand, the probability distribution of non-stationary noise is time-dependent. 
 

Figure 5.1 Stationary and non-stationary noise waveforms 
 
Ideal stationary white noise is a concept derived from Johnson noise and shot noise 
that can be completely described by its essential feature: autocorrelation is nil at 
any time distance τ, other than zero, between two samples. 
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We can define it also as a random signal having equal intensity at different 
frequencies which means that white noise features a constant power spectral 
density. As a result, the autocorrelation of the noise can be described as a delta 
function centered in zero with area equal to Sb (bilateral spectral density)  
 

𝑅66(1) = 𝑆H𝛿(𝜏) 

Figure 5.2 Ideal stationary white noise autocorrelation 
 
Being the power spectrum of a stationary noise, by definition, the Fourier transform 
of the autocorrelation, the transform of Rnn(τ) yields a constant spectrum with 
magnitude Sb 

𝑆6(𝑓) = 𝑆H 

Figure 5.3 Ideal stationary white noise power spectrum 
 
We can already see why this is an ideal case: since the spectrum is constant with no 
frequency limit, this noise has a divergent power. The relation between power 
spectrum of a signal x(t) and its power is  
 

𝑃 = & 𝑆,(𝑓)𝑑𝑥
!"

#"
 

 
That’s why constant unlimited spectral density means divergent power. To extend 
the concept to the more general case of non-stationary noise, we have to go back 
to the definition of ideal white noise: it is a type of noise featuring no correlation 
between any two samples spaced by any finite amount of time. In this case, the main 
difference with respect to stationary noise relies in the noise intensity, that is not 
constant anymore, but it depends on time t. As a result, the autocorrelation function 
of ideal white non-stationary noise is still a delta, but its area is time-dependent: 
  

𝑅66(𝑡, 𝑡 + 𝜏) = 𝑆H(𝑡)𝛿(𝜏) 
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5.3 Wide band noise 
In the real case, noise cannot have infinite power and thus it cannot have a constant 
power spectrum; in order to properly describe real white noise, we need to remove 
some idealities from our previous model. 
Real white noise features very small width of autocorrelation and so a very wide 
(but not infinite) band with constant spectral density Sb. Practically speaking, noise 
is well approximated by ideal white one when it is correlated only at a time distance 
shorter than the minimum time interval of interest in the system. 
It is worth noting that in real cases, an upper bandwidth limit always exists. Indeed, 
bandwidth limitations arise from physical constraints of the system or due to low 
pass filtering enforced by the circuitry.  
 
Insight “Resistor bandwidth limitation” 
 
To understand the intrinsic bandwidth limitations that affect any real system, let’s 
consider one of the most ideal components we know: the resistor. 
Ideally, a resistor shouldn’t change its electrical behavior no matter the frequency 
of the signal we are applying. However, this is just an ideal scenario since different 
types of real resistors (and thus different construction structures and techniques) 
lead to different frequency responses due to parasitic capacitances and/or 
inductances. A few examples are reported in the following to give the reader an 
insight into the causes of bandwidth limitations. 
 

• Carbon-composition resistors 
A tubular case is filled with a mixture of carbon granules and a filler material; the 
ratio between these two components defines the resistive values. They act as pure 
resistors at frequencies up to the Megahertz (MHz) range. Such a high bandwidth 
extension poses a limitation to their value, that has to be at most equal to a few tens 
of kilo Ohm. 

• Film-type resistors 
Made as rods of a ceramic material (insulator) coated with a metal, the resistance 
value of film-type resistors is controlled through the thickness of the metal deposit. 
Most of these resistors have a spiral structure that makes them behave as inductors at 
frequencies in the MHz range. Some film-type resistors do not have a spiral structure, 
such as surface mount resistors: the provide a purely resistive behavior up to 
hundreds of MHz. 

• Wire-wound resistors 
They are a coil of wire coated with insulator and the resistance value is controlled 
acting on the length of the wire itself. Due to its structure, the parasitic inductance is 
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pretty high. This is confirmed by the frequency response that shows deviation from 
ideality already around hundreds of Hz. 
 
The Lorenzian spectrum is a typical real case of wide-band noise; its spectrum is 
limited by a single pole with time constant Tp (pole frequency fp=1/(2πTp)). 
 

𝑅66(𝜏) = 𝑛g%	𝑒#|1|/-! 

Figure 5.5 Lorenzian autocorrelation 
 

𝑆6(𝑓) =
𝑆H

1 + |2𝜋𝑓𝑇/}
% 

Figure 5.6 Lorenzian power spectrum 
 
5.4 Basic parameters of white band noise  
In many cases, we can use a simplified description of a wide-band noise retaining 
its main features in order to make the calculations easier. This comes in handy 
especially when the filter’s autocorrelation time width is comparable to the noise 
one. With a Lorentzian noise spectrum featuring a non-negligible autocorrelation 
time width, for example, we need an approximation that leads us to a result close to 
the real one to make a first order estimation. In this case, we cannot consider the 
noise as ideal while the correct calculation with the exponential shape can make the 
computation time quite long.  
The two important characteristics of the real case that we want to preserve in the 
approximated versions of the autocorrelation Rnn(τ) and of the spectrum Sn(f) are 
the mean square n2 and the spectral density Sb. 

 

In the time domain we want a small autocorrelation width, but instead of using a 
delta function we can approximate Rnn(τ) as a triangular function with width at half 
maximum equal to 2Tn. The following constraints must be preserved: 
• Same mean square noise: Rnn(0) =  𝑛g% 
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• Same spectral density: in time domain, it means having the area of Rnn(τ) equal 
to Sb. This can be expressed as 2Tn * 𝑛g%= Sb 

We can thus derive the autocorrelation width as Δτ=2Tn. 
 

Figure 5.7 Approximated autocorrelation 
 
In the frequency domain, we wish to retain a spectrum having broad bandwidth 
and a constant amplitude. We can thus approximate Sn(f) with a rectangular 
function, featuring a bandwidth limitation at fn, and bound to the following 
constraints: 
• Same spectral density of the real case: Sn(0)= Sb. 
• Same mean square noise: the area of Sn(f) in the frequency domain must be 

equal to 𝑛g%. This can be expressed as Sb *fn= 𝑛g%. 
We can thus derive the noise bandwidth as Δf= 2fn. 

Figure 5.8 Approximated power spectrum 
 
The approximation is consistent since ΔτΔf= 1 as the expression that relates the 
power spectrum and the autocorrelation function requires Sn(f)=F[Rnn(τ)] 
Following this discussion, we can derive a simplified description of the 
Lorentzian spectrum with triangular autocorrelation or a rectangular spectrum 
(depending on the final use). 
The autocorrelation should have Δτ=2Tp and thus Tp=Tn. 

Figure 5.9 Approximated Lorenzian autocorrelation (in red) and real (in black) 
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In the frequency domain, the spectrum has a constant amplitude Sb up to fn=1/4Tp 

Figure 5.10 Approximated Lorenzian spectrum (in red) and real (in black) 
 
5.5 Foundation of white noise filtering 
As seen in the previous chapters, noise can be seen as the superposition of 
elementary pulses, each one characterized by its own waveform (and therefore its 
Fourier transform). The type of noise elementary pulses contributes to determine 
the noise autocorrelation function, its spectrum and thus the type of noise. 
The filtering action of a linear constant-parameter filter modifies the elementary 
pulse shape and so it can modify the noise properties too.  
Noise filtering can be understood and evaluated by studying the filtering action on 
the elementary pulses. 
Let’s consider as an example the noise of a photodiode connected to an amplifier 
as shown in figure below. 

Figure 5.11 Circuit example schematics 
 
A photodiode is basically a pn-junction whose current flow depends on the 
illumination of the device. It is typically biased applying a positive voltage between 
cathode and anode (i.e. reverse bias operation). In this condition, the light that is 
absorbed in the depleted region can release an electron-hole pair which contributes 
to the current flow through the device. 
The device model usually includes a capacitor, which is physically justified by the 
depletion capacitance of a pn-junction (and the input capacitance of the amplifier) 
whose value can be approximated as  
 

𝐶 = 𝜀.𝜀J=
𝐴
𝑊K
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where A is the cross-sectional area of the device and Wd is the width of the depletion 
layer. 
We can model the system as a current generator in parallel with the resistance R and 
the equivalent capacitance of the sensor as shown in figure 5.12 
 

Figure 5.12 Equivalent circuit model 
 
The current generator represents the diode current, which can be decomposed in the 
superposition of elementary current pulses pi(t). If the characteristic time Th of the 
elementary pulses is small enough (with respect to the RC time constant), they can 
be approximated to delta-pulses. 
  

𝑞𝑝=(𝑡) ≃ 𝑞𝛿(𝑡) 

Figure 5.13 Elementary input pulse 
 
Given a stream of current noise delta-pulses, the current flowing through the resistor 
R can be decomposed into elementary pulses with exponential shape, resulting from 
the presence of the RC low pass filter. The elementary output pulse is shown in 
figure 5.14. 
 

𝑓(𝑡) =
1
𝑇'
𝑒
# (
-+1(𝑡) 

 

𝐹(𝑓) =
1

1 + 𝑗2𝜋𝑓	𝑇'
 

 

Figure 5.14 Elementary output pulse 
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In the time domain, in order to evaluate the mean square value of noise before and 
after the filtering action we need to consider the central values of the autocorrelation 
functions  
 

Input autocorrelation Rii Output autocorrelation Roo 

              𝑅==(𝜏) ≃ 𝑞𝐼𝛿(𝑡)           𝑅LL(𝜏) = 𝑞𝐼 )
%-+

	𝑒#|1|/-+ 

 

 
 
Figure 5.15 Input and output autocorrelation of the example 
 
In the frequency domain, in order to evaluate the mean square value of noise 
before and after the filtering action we need to consider the areas of input and output 
spectral density 
 

Input spectral density Si(f) Output spectral density So(f) 

                𝑆=(𝑓) = 𝑆H            𝑆L(𝑓) = 𝑞𝐼 )

)!M%&'	-+N
* 

  
 
Figure 5.16 Input and output spectrum of the example 

 
As expected, the presence of a single-pole low-pass filter limits the ideal input 
noise in frequency and produces an output noise featuring a Lorentzian spectrum. 
 
05.6 Filtering white noise in discrete time 
We now consider filtering in the digital domain, that is, we assume the time interval 
of interest to be discretized.  
Calling Ts the sampling time, i.e. the time distance between two consecutive 
samples, we have a discrete time scale where 
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𝑡6 = 𝑡6#)		 + 𝑇O 
  

We will refer to the noise sample at time n as nn.  
Filtering consists into multiplying each sample of the noise by a given weight. The 
output is the sum of the weighted noise samples: 
 

𝑛' = 𝑤)𝑛) +𝑤%𝑛% +𝑤P𝑛P… =�𝑤5𝑛5
Q

 

 
Where N is the total number of collected samples.  
We want to extract the output noise mean square value that can be written as  

 
 
  

 
 

If we consider the noise as ideal and uncorrelated (so with a delta autocorrelation) 
all rectangular terms are nil no matter how small the sampling time is. 
Taking into account a real noise the rectangular terms can be eliminated only if the 
sampling time Ts is reasonably larger than the noise autocorrelation. 
If a Lorentzian spectrum is considered, the sampling time Ts should be at least five 
times larger than the exponential decay time, in order to consider the samples 
uncorrelated; if an approximated Lorentzian spectrum is considered instead, Ts 
should be at least two times larger than the exponential decay time.       
 
The cancellation of the square values leaves us just with  
 

𝑛'ggg% = ∑𝑤5%	𝑛5%ggg 

 
If the noise is stationary the mean square noise in each time point is equal (we have 
no dependence on time) so the expression can be further simplified as  
 

𝑛'ggg% = 𝑛g%∑𝑤5% 
 
As we will see in the following chapters, a similar simplification holds also for 
continuous time filtering. 
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    CHAPTER      6 
 

Filtering Signals 
 
The presence of noise can make it difficult or even prevent the acquisition of a 
signal: in these cases, filtering is mandatory. A filter typically acts on both the 
signal and the noise. In this chapter, we will discuss how a filter can have an impact 
on the signal. Filters can be modeled by linear or non-linear equations (for the first 
kind superposition of effects can be used) and their parameters can be constant or 
time-variant. In this chapter, we will only deal with linear filters, both constant-
parameter and time-variant ones. 
 
6.1 Introduction 
If you want to measure with a certain precision a signal buried in noise, you need a 
system able to have a different effect on signal and noise, enhancing the first with 
respect to the second and thus increasing the signal-to-noise ratio. In this chapter, we 
will focus on the filtering effect on signals, analyzing simple examples that are useful 
to understand how to build the weighting function of a filter, that is, as its name 
suggests, the set of weights which must be applied to the signal in every time instant 
to determine the output. 
 
6.2 Discrete-time and Continuous-time Signal Filtering  
To better understand the concept of filtering, we can use digital/discrete systems 
which allow a simple approach that can be extended to the analog/continuous ones.  
So, let’s consider this acquisition scheme in figure 6.1 where 𝑦(𝑡<) is the acquired 
signal at a specific time 𝑡<. 
 

 
Figure 6.1 Generic acquisition chain. 
 
If the filter is linear, i.e. the elements inside of it are described by linear equations, 
the output of a linear combination of the inputs is the linear combination of the output 
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obtained feeding to the filter the same inputs singularly. In other words, the output is 
a weighted sum of input values x taken at various time t with weights that do not 
depend on the input x. In discrete time filtering this sum is: 
 

𝑦(𝑡<) = 𝑤)𝑥(𝛼)) + 𝑤%𝑥(𝛼%) + 𝑤P𝑥(𝛼P) +⋯+𝑤6𝑥(𝛼6) =�𝑤5𝑥(𝛼5)
6

5R.

 

𝑦(𝑡<) =�𝑤5𝑥5

6

5R.

 

 
On the other hand, if we consider time-variant filters, the weights can change over 
time and so will the shape of the filter. Note that also in this case they aren't a function 
of the input signal, otherwise we would talk about an adaptive filter, which is a 
completely different matter. 
 

 
Figure 6.2 Weights for every sample of the input and calculation of the output for a discrete-time system. 
 
To understand the meaning of “weight”, we can use the example in figure 6.2, where 
the signal is decaying exponentially and the weights are as shown (as we can imagine, 
this is not a good weighting function because it’d be better, intuitively, to have a 
higher weight where the signal is high and a lower weight where the signal is low, as 
will be clearer later in this book). To obtain the desired output value, we can multiply 
the samples with the weight and add them together. Now, if we want to extend the 
same concept to the analog case with a continuous-time weighting function, instead 
of a sum, we have an integral. This is necessary because we have an infinite number 
of samples and weights as shown in figure 6.3. 
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Figure 6.3 Weighting function and evaluation of the output for a continuous-time system. 
 
The weighting function (also called memory function) of a filter assigns a weight 
w(α) to each element x(α)dα. Why is it called memory function? 
Because the output y depends on every element of the input signal that entered the 
filter: the system has memory of the past. We will see in the following paragraphs 
how to build this function starting from the impulse response of the filter. 
 
6.3 Constant Parameter Filters 
As we said, constant parameters filters have a response that is invariant with respect 
to a translation along the time axis: if the same signal 𝑥 is applied to the filter at two 
different time instants, 𝑡< and 𝑡< + 𝛼, the output is the same but translated in time 
by the same quantity (∆𝑡 = 𝛼). 
We will now discuss how to calculate the weighting function of a constant parameter 
filter. First of all, it is necessary to compute the impulse response of the filter. 
In particular, we need to know the effect of a delta applied at a generic instant 𝛼) on 
the output measured at 𝑡<. As shown in figure 6.4, time instants 𝛼) and 𝑡< are both 
referred to the same arbitrary origin on the time axis, but the relevant parameter is 
the time distance between them. (A more complete expression of the weighting 
function should be w(α, t), where both α and t can vary).  
How can we derive the weighting function? If we look at the top of figure 6.4 we see 
that a delta applied at time 𝛼) gives a contribution to the output which is equal to its 
delta response at 𝑡<, that is ℎ(𝑡< − 𝛼)). Well, it is quite clear now that ℎ(𝑡< − 𝛼)) 
corresponds to the weight that the filter gives to a delta applied at 𝛼).	 The same holds 
for any delta applied at different time distances with respect to 𝑡<. 
We have seen in chapter 2 that any input signal can be written as the superposition 
of deltas. 
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Figure 6.4 Graphic representation of the weighting function construction 
 
Therefore, if we know the delta response of the filter, we can calculate the weights 
that the filter applies to any delta that composes the input signal on the basis of the 
time distance between the input delta itself and the measurement time. As a result, 
the complete weighting function of a constant parameter filter is its delta response, 
reversed in time and shifted to 𝑡<.  
Once 𝑡< is fixed, the weighting function is unique; it has always the same shape and 
the same position with respect to 𝑡<. In other words, when 𝑡< is changed, w(α) 
changes in a very simple way: “it walks with 𝑡< just like a tethered dog follows his 
boss”. This is shown in figure 6.5. 
 

 
Figure 6.5 Weighting function of a constant parameter filter at two different acquisition times. 
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So, for constant-parameter filters (but not for time-variant filters): 
 

w(α, tS) = h(tS − α)						∀tS 
 
The result is confirmed analytically. The weighting function is defined by: 
 

y(tS) = & x(α)w(α, tS)dα
T,

#"
					∀tS 

 
But for constant parameter filter we also know that the output at time 𝑡< is the 
convolution between the input 𝑥(𝑡)and the impulse response ℎ(𝑡) evaluated in 𝑡<: 
 

y(tS) = x(t) ∗ h(t)|T, = & x(α)h(tS − α)dα			∀𝑡<
"

#"
 

  
Since h(t-α) is defined only for α<tm the integral can be rewritten as: 
 

y(tS) = & x(α)h(tS − α)dα
T,

#"
			∀tS 

 
From the equations above, therefore, it is: 
 

w(α, tS) ≡ h(tS − α) 
 
As a result, constant-parameter filters are completely characterized in the time 
domain by the impulse response to the Dirac delta ℎ(𝑡).  
It is important to remember that this result is not valid for time-variant filters. 
 

6.3 Time-variant Linear Filter 
A time-variant filter is a filter whose parameters are not constant over time. The 
easiest way to change the filter parameter over time is having a switch in the circuit. 
We can consider a simple RC circuit with a switch, that is controlled by an external 
signal, as an example. By changing the switch position (DOWN=switch closed, 
UP=switch open), we are changing the configuration of the filter over time and the 
delta-response of the filter will also change. For example, a delta applied at the input 
when the switch is open will have no effect on the output.  
Now, we will derive the weighting function using the same approach that we used 
for constant parameter filters. Let’s consider a time 𝑡< and analyse the effect of a 
delta on the output. Two different cases have to be distinguished: when the switch is 
open, the input signal cannot affect the circuit output, which remains constant; when 
the switch is closed the circuit behaves as a constant parameter filter featuring the 
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Figure 6.6 𝛿-response of time-variant filter consisting in a RC network and a switch in series to the input. 
The 𝛿-response is not unique, but it strongly depends on the circuit configuration over time. 
 
same delta response that we have seen in the previous paragraph (see figure 6.4). 
Figure 6.6 shows the response to a delta that is applied when the switch is closed and 
a double switching transition (DOWN-UP-DOWN) occurs afterwards. 
Starting from this result, we can calculate the weighting function, which strongly 
depends on the measurement time. Two graphical examples showing how to derive 
the weighting functions of time-variant filters are reported in figure 6.7 and 6.8. Note 
that when the switch is UP, 𝑤(𝛼) is zero. 

 
Figure 6.7 Weighting function of a time-variant filter at a certain measurement time following a DOWN-
UP-DOWN sequence of the switch.  
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Figure 6.8 Weighting function of a time-variant filter at another measurement time following a UP-
DOWN-UP sequence of the switch.  
 

6.7 Weighting in the Frequency Domain 
Sometimes it can be convenient to change from time domain to frequency domain to 
make calculations easier. This is valid also for the weighting functions. The idea of 
considering 𝑦(𝑡) as a weighted sum of components can be extended to the frequency 
domain. Let’s consider Parseval’s theorem: 
 

& 𝑎%(𝑡)𝑑𝑡
!"

#"
= & 𝐴(𝑓)𝐴∗(𝑓)𝑑𝑓

!"

#"
= & 𝐴(𝑓)𝐴(−𝑓)𝑑𝑓

!"

#"
 

 
Which can be extended to the product of two functions 𝑎(𝑡) and 𝑏(𝑡) 
 

& 𝑎(𝑡)𝑏(𝑡)𝑑𝑡
!"

#"
= & 𝐴(𝑓)𝐵∗(𝑓)𝑑𝑓

!"

#"
= & 𝐴(𝑓)𝐵(−𝑓)𝑑𝑓

!"

#"
 

 
Denoting by 𝑊(𝑓) = 𝐹[𝑤(𝑡)] we have: 
 

𝑦(𝑡<) = & 𝑥(𝛼)𝑤(𝛼)𝑑𝛼
!"

#"
= & 𝑋(𝑓)𝑊(−𝑓)𝑑𝑓

!"

#"
 

 
In general, the value 𝑦 acquired at the time 𝑡< at the filtering system output can be 
considered either as a weighted sum of instantaneous input values 𝑥(𝑡) with weights 
𝑤(𝑡) or as a weighted sum of Fourier components 𝑋(𝑓) of the input signal 𝑥(𝑡) with 
weights 𝑊(−𝑓) = 𝐹[𝑤(−𝑡)]. 
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6.8 Summary 
• For constant-parameter filters (and only for them) the weighting function is 

simply the 𝛿-response function reversed and shifted in time. 
• That’s NOT true for time-variant linear filters, which do not have a unique 

𝛿-response. The shape of the 𝛿-response depends on when the 𝛿-function is 
applied to the input during the evolution in time of the filter. 

• The weighting function in linear time-variant filters may be difficult to 
compute, but it always exists. 

• For filters that vary in time with a simple law, it is fairly simple to compute 
the weighting function at a given measurement time, in particular for 
switched-parameter filters. 

• Switched-parameter filters undergo abrupt changes at the transition from a 
time interval to the next one, but within each interval, their parameters stay 
constant. 

• The values of electrical variables (voltages, currents) before and after 
switching must be carefully checked because they can be discontinuous, i.e. 
they may exhibit abrupt variations at the switching time.

 



 

    CHAPTER      7 
 

Filtering noise 
 
 
In the previous chapters we acquired some basic tools to study signals and noise, 
such as the autocorrelation function and the spectral density. In chapter 6 we 
studied how to filter the signal; now let's see how to apply these tools to calculate 
the output noise of a generic filter. 
 
 

7.1 Introduction 
The aim of this chapter is the calculation of the output noise from a system; this will 
allow us to study also the output noise from any filter. 
The dissertation can be extremely complex; therefore, after an introductive 
dissertation of the noise output of a generic system, we will simplify the general case 
to get closer to more practical situations. We will then focus on stationary noise and 
we will see how the result is modified when the noise is also white. 
Finally, we will see how to further simplify the treatment in the case of systems/filters 
with constant parameters. 
 

 
Figure 7.1  
 
Let's start from the characteristics of noise. We have seen how the autocorrelation 
function is a key tool to obtain important information such as noise density and so its 
total power. Referring to figure 7.1 and following the definition, we can write the 
autocorrelation function of both the input and the output noise of our system. 
 
 

𝑅,,(𝛼, 𝛼 + 𝛾) = 𝑥(𝛼)𝑥(𝛼 + 𝛾)gggggggggggggggggg 
 
 

𝑅88(𝑡, 𝑡 + 𝜏) = 𝑦(𝑡)𝑦(𝑡 + 𝜏)gggggggggggggggg 
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However, recalling the results obtained in the last chapter, we can write the 
autocorrelation of the output as a function of the input, obtaining: 
 
 

𝑅88(𝑡), 𝑡%) = 𝑦(𝑡))𝑦(𝑡%)gggggggggggggg = 
 

= & 𝑥(𝛼)𝑤)(𝛼)𝑑𝛼 ∙
"

#"

& 𝑥(𝛽)𝑤%(𝛽)𝑑𝛽
"

#"

gggggggggggggggggggggggggggggggggggggggggggggg
= { 𝑥(𝛼)𝑥(𝛽)gggggggggggg	 ∙ 𝑤)(𝛼)𝑤%(𝛽)𝑑𝛼	𝑑𝛽

"

#"
= 

={ 𝑅,,(𝛼, 𝛽)	𝑤)(𝛼)𝑤%(𝛽)𝑑𝛼	𝑑𝛽
"

#"
 

 
by setting in evidence the intervals of autocorrelation at the input 
 

γ = β – α 
 
and at the output    
 

τ = t2 – t1 
 
the autocorrelation function can be expressed as 
 

𝑅88(𝑡), 𝑡) + 𝜏) = { 𝑅,,(𝛼, 𝛼 + 𝛾)	𝑤)(𝛼)𝑤%(𝛼 + 𝛾)𝑑𝛼	𝑑𝛾
"

#"
 

 
 
An extremely important parameter is the power of noise, so we can write the mean 
square noise at time t1: 
 

𝑦%(𝑡))gggggggg = 𝑅88(𝑡), 𝑡)) = { 𝑅,,(𝛼, 𝛼 + 𝛾)	𝑤)(𝛼)	𝑤)(𝛼 + 𝛾)𝑑𝛼	𝑑𝛾
"

#"
  

 
 
These equations are valid for all cases of noise and linear filtering, that is, also for 
non-stationary input noise and for time-variant filters. 
 
 

7.2 Filtering stationary noise 
The equations we just found change and can be simplified in case of stationary noise, 
that is an extremely frequent condition. 
When the noise is stationary, its autocorrelation function at the input only depends 
on the time interval  
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γ = β – α 
 
We can then simplify the input autocorrelation: 
 

𝑅,,(𝛼, 𝛼 + 𝛾) = 𝑅,,(𝛾) 
 
The output autocorrelation function can be rewritten as well 
 

𝑅88(𝑡), 𝑡) + 𝜏) = { 𝑅,,(𝛾)	𝑤)(𝛼)𝑤%(𝛼 + 𝛾)𝑑𝛼	𝑑𝛾
"

#"
= 	 

= & 𝑅,,(𝛾)
"

#"

& 𝑤)(𝛼)𝑤%(𝛼 + 𝛾)𝑑𝛼	𝑑𝛾
"

#"

 

 
It is important to point out that we set, as condition, a stationary input noise. In this 
condition: 

a) a constant parameter filter produces stationary output noise.  
b) a time-variant filter can produce a non-stationary output noise!  

 
Starting from the last equation we can try to further simplify it 
 

𝑅88(𝑡), 𝑡) + 𝜏) = & 𝑅,,(𝛾)
"

#"

& 𝑤)(𝛼)𝑤%(𝛼 + 𝛾)𝑑𝛼	𝑑𝛾
"

#"

	

 
 
we can see how the last part of the equation is the definition of the crosscorrelation 
of the functions w1( α)  and w2( α), which we will denote by  k12w( γ) 
 

𝑘)%V(𝛾) = & 𝑤)(𝛼)𝑤%(𝛼 + 𝛾)𝑑𝛼
"

#"
 

 
As a result, we can derive two important formulas to study of the output noise, which 
are the output autocorrelation function: 
 

𝑅88(𝑡), 𝑡) + 𝜏) = & 𝑅,,(𝛾) ∙ 𝑘)%V(𝛾)
"

#"

𝑑𝛾 

 
and the mean square noise, where we just have to consider the autocorrelation of 
w1(α)  
 

𝑦%(𝑡))gggggggg = 𝑅88(𝑡), 𝑡)) = & 𝑅,,(𝛾) ∙ 𝑘))V(𝛾)
"

#"

𝑑𝛾  
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The last equation gives us the mean square output noise in case of stationary input 
noise and for any linear filter, both constant-parameter and time-variant filters. 
Recalling that 
 

	𝐹[𝑘))V(𝛾)] = |𝑊)(𝑓)|% 
 
 
using the Parseval theorem extension, we can calculate the mean square output noise 
in the frequency domain obtaining 
 

𝑦%(𝑡))gggggggg = & 𝑆,(𝑓) ∙ |𝑊)(𝑓)|%
"

#"

𝑑𝑓  

 
This is an extremely useful result, since it gives us, in an intuitive way, the effect of 
a filter on the total output noise power. In the integral we can in fact recognize the 
input noise spectral density and  |𝑊)(𝑓)|%. If our goal is to reduce the total noise 
power, then we will have to design a filter aimed at minimizing this product. 
 
7.3 Filtering white noise 
We can further simplify the study of the output noise if we have a white stationary 
noise, i.e. with a constant intensity (power). 
As definition of white noise, we know that its autocorrelation function can be written 
as 
 

𝑅,,(𝛼, 𝛼 + 𝛾) = 𝑅,,(𝛾) = 𝑆H ∙ 𝛿(𝛾) 
 
Therefore, the equation of the output autocorrelation becomes 
 

𝑅88(𝑡), 𝑡) + 𝜏) = 	𝑆H & 𝑤)(𝛼)𝑤%(𝛼)𝑑𝛼 =
"

#"

𝑺𝒃 ∙ 𝒌𝟏𝟐𝒘(𝟎) 

 
and the output mean square value 
 

𝑦%(𝑡))gggggggg = 𝑆H ∙ 𝑘))V(0) = 𝑆H & 𝑤)%(𝛼)𝑑𝛼
"

#"

 

 
As we can see from the last equation, the calculation of the autocorrelation of the 
weighting function, and in particular its value in zero, it is extremely important for 
the calculation of the output noise power. 
As in the previous paragraph, we can obtain the mean square value also in the 
frequency domain exploiting the Parseval theorem. 
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We can then write 
 

𝑦%(𝑡))gggggggg = 𝑆H &|𝑊)(𝑓)|%
"

#"

𝑑𝑓 

 
We could have obtained the same results exploiting also one of the Fourier transform 
properties that we recalled in chapter 2:  
“the value in zero of the Fourier transform is the integral of the function in time, and 
the value in zero of the function in time is the integral of the Fourier transform”  
 

𝑥(0) = &
!"

#"
𝑋(𝑓)𝑑𝑓 

 
so we can obtain the same result about the mean square value recalling that 
 

	𝐹[𝑘))V(𝛾)] = |𝑊)(𝑓)|% 
 
 
7.4 Filtering noise with constant-parameter filters 
A constant-parameter filter is completely characterized by the δ-response h(t) in the 
time domain and by the transfer function   H(f) = F[h(t)] in the frequency domain. 
In the previous chapters, we understood that the weighting function for an acquisition 
time tm and the δ-response are simply related by: 
 

𝑤<(𝛼) = ℎ(𝑡 − 𝛼) 
 
and therefore, in frequency 
 

|𝑊<(𝑓)|% = 	|𝐻(𝑓)|% 
 
Let’s now apply these two relations to the autocorrelation function of the output 
noise: 

𝑅88(𝑡), 𝑡%) = { 𝑅,,(𝛼, 𝛽)	𝑤)(𝛼)𝑤%(𝛽)𝑑𝛼	𝑑𝛽
"

#"

={ 𝑅,,(𝛼, 𝛽) ∙ ℎ(𝑡)	–𝛼)ℎ(𝑡% − 𝛽)𝑑𝛼	𝑑𝛽 =
"

#"

= & ℎ(𝑡)	 − 𝛼)𝑑𝛼
"

#"

	 & 𝑅,,(𝛼, 𝛽) ∙ ℎ(𝑡%	–𝛽)𝑑𝛽 =
"

#"

 

 
= 𝑅,,(𝛼, 𝛽) ∗ ℎ(𝛽) ∗ ℎ(𝛼) 
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Taking into account that: 
 

• the stationary input autocorrelation depends only on the interval  𝛾 = 𝛽 − 𝛼 
• 𝑑𝛽 = 𝑑𝛾  
• 𝑑𝛼 = −	𝑑𝛾  

 
the output autocorrelation is also stationary and depends only on the interval τ  
 

𝑅88(𝜏) = 𝑅,,(𝛾) ∗ ℎ(𝛾) ∗ ℎ(−𝛾) =  𝑅,,(𝛾) ∗ 𝑘DD(𝛾) 
 
and therefore 
 

		𝑆8(𝑓) = 𝑆,(𝑓) ∙ |𝐻(𝑓)|% 
 
that give us the output noise spectral density as a function of the input noise spectral 
density and the Fourier transform of the delta response of our system. 
As usual we can calculate the output mean square value both in the time domain and 
in the frequency domain, computing the autocorrelation of the noise: 
 

𝑦%ggg = 𝑅88(0) = 	 & 𝑅,,(𝛾)	𝑘DD(𝛾)𝑑𝛾
"

#"

 

 
and using the Parseval theorem or just integrating the output noise spectral density 
 

𝑦%ggg = 	 & 𝑆,(𝑓)|𝐻(𝑓)|%𝑑𝑓
"

#"

 

 
If the input noise is white, we finally have 
 
 

𝑅,,(𝛾) = 𝑆H𝛿(𝛾) 
 
and therefore 
 

𝑦%ggg = 𝑆H 𝑘DD(0) 
 

𝑦%ggg = 𝑆H &|𝐻(𝑓)|%𝑑𝑓
"

#"

 

 



 

    CHAPTER      8 

Constant-Parameter Low 
Pass Filters 
 
As discussed in the previous chapters, the information of interest is typically 
accompanied by noise.  In some cases, it is possible to select a filter that reduces 
the contribution of the noise without having a substantial impact on the signal, 
hence improving the signal-to-noise ratio. Low Pass Filters are a class of filters 
that can be used to achieve this goal. In this chapter, we will present and discuss 
some constant-parameters filters: the passive RC-integrator, the active RC-
integrator and the Mobile Mean filter.  
 
 

8.1 Introduction 
The information of interest is carried out by the signal. Unfortunately, superimposed 
noise, which is typically due to the sensor physics and the following readout 
electronics, might be non-negligible causing a degradation or even an obscuration of 
the information itself. To mitigate the impact of noise, we need a filter able to exploit 
at best the differences between signal and noise, taking well into account 
what kind of information is to be recovered.  
It’s a quite common situation to have a low-frequency signal accompanied by a wide-
band noise. In these cases, it is worth it to simply add a filter that cancels out 
everything above the maximum bandwidth of the signal, leaving untouched the rest 
of it. The filtering weight is concentrated in a relatively narrow frequency band from 
zero to a limited frequency, while above the band-limit it falls to negligible value, as 
depicted in figure 8.1. These kinds of filters are called “Low Pass Filters” (LPF). 
Correspondingly, in the time domain the weighting function has relatively wide time-
width, as well as its autocorrelation. So, in the time domain, the action of the filter is 
to produce a (weighted) time-average of the input over a certain time interval, 
delimited by the width of the weighting function. 
 
 

8.2 The RC integrator 
The easiest way to implement a constant-parameter low pass filter is to use a resistor 
in series to our signal followed by a capacitor towards ground as in the figure 8.2. 
The voltage across the capacitor will be a low pass filtered version of the input signal. 
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Figure 8.1 Ideal Low Pass filter. 
 
 

 
 

Figure 8.2 Basic scheme of a RC integrator. 

 
In the Laplace domain, the output voltage can be calculated as follows: 
 

𝑉&'( = 𝑉)*

1
𝑆𝐶

𝑅 + 1
𝑆𝐶

= 𝑉)*
1

1 + 𝑆𝐶𝑅
 

 
This result shows us that the transfer function is 
 
 

𝐻(𝑓) =
1

1 + 𝑗2𝜋𝑓𝑇+
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Figure 8.3 Plot of the squared module of the transfer function. Both the axes are in a linear scale. The pole 
occurs when the module is 1 √2⁄   of its original value, so when the square of the module is halved. 
 

 
Figure 8.4 Plot of the squared module of the transfer function. Only the frequency axis is in logarithmic 
scale. 
 

 
Figure 8.5 Plot of the squared module of the transfer function. Both the axes are in logarithmic scale. 
The grey one is the approximate version, the black one is the real one. After the pole, the function goes 
down with a slope of -20 dB/decade. 
 
The transfer function confirms that a RC series network implements a low pass filter 
(at infinite frequency the transfer function is equal to zero) with a pole having a time 
constant 𝑇+ 
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𝑇+ = 𝑅𝐶 
 
for 2𝜋𝑓𝑇' ≪ 1, i.e. for 𝑓 ≪ 𝑓/ =

)
%&-+

 , we have 𝐻(𝑓) ≅ 1, and then 𝑉ZL( ≅	𝑉=6. 

for  2𝜋𝑓𝑇' ≫ 1, i.e. for 𝑓 ≫ 𝑓/ =
)

%&-+
 , we have 𝐻(𝑓) ≅ 0, and then 𝑉ZL( ≅ 	0.  

 
It is worth noting that a RC LPF does not feature a sharp transition between passband 
and stopband, but a relatively smooth one. To have an idea, the module of 𝐻(𝑓) at 
the pole frequency (𝑓 = 𝑓/) is |𝐻(𝑓)| = 	 )

√%
 .  

To understand the effect of this circuit on noise, we can easily plot |𝐻(𝑓)|% and 
compare it with the ideal one of a LPF. In figures 8.3, 8.4 and 8.5, the transfer 
function is plotted for different horizontal and vertical axes. Normally the student is 
used to plot this function in a Bode diagram, while in the next chapters it will be 
useful to be familiar with all of these representations. 
In the time domain, the circuit behavior can be analyzed solving the differential 
equation of the circuit and finding the δ-response.  

 
Being the current in the resistor equal to the one in the capacitor for the current 
Kirchhoff’s law, and being 
 

𝐼0 = 𝐶	
𝑑𝑉&'((𝑡)
𝑑𝑡

 

 
we get 
 

𝑉)*(𝑡) − 𝑉&'((𝑡)
𝑅

= 𝐶
𝑑𝑉&'((𝑡)
𝑑𝑡

 

 
that is 
 

𝑑𝑉&'((𝑡)
𝑑𝑡

+
𝑉&'((𝑡)
𝑅𝐶

=
𝑉)*(𝑡)
𝑅𝐶

 

 
To solve it we can use the Lagrange formula: 
 

𝑉&'((𝑡) = 𝑒1
(
23 	9𝑉&'((𝑡4) + :

𝑉)*(𝑡)
𝑅𝐶

	𝑒 	
(
23 	𝑑𝑡	

(

(3
; 

 
So, setting the starting condition as 𝑉ZL((𝑡.) = 0	𝑉 (which means that at 𝑡. = 0	the 
capacitor is discharged), we have a Cauchy problem with a unique solution. 
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To calculate the δ-response, we set  𝑉=6(𝑡) = δ(t).  
Since 
 

: δ(t)	𝑒 	
(
23 	𝑑𝑡 = : δ(t)

(

16
= 1(𝑡)

(

16
 

 
we get, overall, the well-known result: 
 

𝑉&'((𝑡) = ℎ(𝑡) =
1
𝑅𝐶

	𝑒1
(
23 		1(𝑡) 

 
Figure 8.6 δ-response of the RC integrator. 
 
It is worth noting a couple of properties of result: 
 
• if the area of the input delta is unitary, also the area of the response is unitary. This 

is obvious reasoning in term of charges; 
 
• Vout is the voltage across the capacitor and it experiences a sudden rise. Since the 

current in the capacitor is the derivative of the voltage across it, we expect “infinite 
current” into it, so “infinite current” into the resistor as well. This is not strange: 
the input signal has infinite amplitude as well, so it’s theoretically able to provide 
all the current needed by the circuit. This mathematical model suggests that we 
should be careful whenever we feed to our circuit a finite amount of charge in a 
very small time, since we could burn some of the components. In real cases though, 
the capability of the sensor to provide charges is limited by the technology, so we 
can usually forget about it. 

 
In conclusion, the δ-response is 

ℎ(𝑡) =
1
𝑅𝐶

	𝑒1
(
23 	1(𝑡) 

 
The weighting function w(t) of the filter is the flipped version of the δ-response, 
starting from tm (i.e. the observation time). 
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Figure 8.7 Weighting function of the RC integrator. 

 
It’s quite clear now that the output will be an average of the input, where the weights 
decrease exponentially. It’s also clear that it makes sense neglecting the value of the 
input signals that are too distant in time from the observation time. A good 
approximation is to consider the output as an average of the input over a time interval 
≈ 2Tf preceding tm (we will see later in this chapter why this approximation is a good 
one). 
 
The step response of the circuit can be easily calculated by setting 𝑉=6(𝑡) = 1(𝑡)	 in 
the Lagrange formula above. Then we’d get 
 

𝑉𝑜𝑢𝑡(𝑡) = 𝑒1
(
23 	A𝑒 	

(
23 − 1B = 1 − 𝑒1

(
23  

 
Figure 8.8 Step response of the RC integrator. 

 
Here, the comments we made about the δ-response are no longer valid. In this case, 
we can point out that the asymptotic value of the output voltage is the amplitude of 
the input step. This was expected, since we have unitary DC gain. 
This suggests that the step response could be also found by inspection. In fact, the 
asymptotic value is the input one, having unitary DC gain; at the step the capacitor 
prevents an abrupt variation of the voltage across its terminals (it acts as a short circuit 
on the signal), so we start from the initial value, i.e. 0V; eventually, we reach our 
target value with an exponential rise with a time constant that is the one of the pole. 
No need to solve the differential equation for that then. 
 



Constant-parameter low pass filters 

 

 83 

We can also give an estimation of the output rise time (10-90% of its variation) that 
could useful to compare step responses of different filters. 
We have to compute 
 

1 − 𝑒#
(
\] =

1
10 	=> 𝑡 = 𝑇' ln §

10
9 © ≈ 	0,1	𝑇' 

and also 
 

1 − 𝑒#
(
\] =

9
10 	=> 𝑡 = 𝑇' ln(10) ≈ 	2,3	𝑇' 

 
Therefore, the risetime will be 
 

𝑇2 = 2,3	𝑇' − 0,1	𝑇' = 2,2	𝑇' 	≈
1
3𝑓/

 

 
Lastly, we could check how the transfer function that we found is indeed the Laplace 
transform of the δ-response. 
In fact, we have 
 
𝐻(𝑠) = ℒ{ℎ(𝑡)} = ∫ )

\]
	𝑒#

$
-.	𝑒#O(𝑑𝑡 = 	−	 )

\]
	 )
O! )

-.
	 ¯𝑒#^O!

)
-._(°

.

!"
		= 	 )

)!J]\
!"
.   

 
as expected. 
 
Now we can evaluate the effect of the circuit filtering action on the noise, studying 
the circuit both in the time and in the frequency domain. 
In the time domain, we first need the autocorrelation of the weighting function.  
The autocorrelation will be 
 

𝐾VV(𝑡) = 𝐾DD(𝑡) 
 

= & ℎ(𝜏)ℎ(𝑡 + 𝜏)𝑑𝜏 =
1

(𝑅𝐶)% 	& 	𝑒#
1
\] 	𝑠𝑐𝑎(𝜏)

!"

#"

!"

#"
	𝑒#

1!(
\] 	𝑠𝑐𝑎(𝜏 + 𝑡)𝑑𝜏

=
1

(𝑅𝐶)% 𝑒
(
\] 	& 	𝑒#

%1
\]𝑠𝑐𝑎(	𝜏)𝑠𝑐𝑎(𝜏 + 𝑡)𝑑𝜏

!"

#"
 

 
For 𝑡 > 0 the integral goes from zero to infinite.  
So, we get  
 

𝐾VV(𝑡) =
1

(𝑅𝐶)% 𝑒
(
\] 	& 	𝑒#

%1
\] 	𝑑𝜏 =

1
2𝑅𝐶	𝑒

(
\]

!"

.
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For t<0 instead it goes from t to infinite. 
So, we get 
 

𝐾VV(𝑡) =
1

(𝑅𝐶)% 𝑒
(
\] 	& 	𝑒#

%1
\] 	𝑑𝜏 =

1
2𝑅𝐶	𝑒

(
\] 	𝑒#

%(
\] =

1
2𝑅𝐶	𝑒

#(
\]

!"

(
 

 
Putting everything together we can write 
 

𝐾VV(𝑡) =
1
2𝑅𝐶	𝑒

#|(|
\]  

 
In figure 8.9 (top) we can see the plot of this result. 
 

 
Figure 8.9 Autocorrelation of the weighting function of the filter (top), compared with the 
autocorrelation of the noise (bottom). 

 
Now, to find the RMS value of the noise at the output we have to compute 
 

𝑦7DDD = 	: 𝐾88(𝑡)𝑅99(𝑡)𝑑𝑡
:6

16
 

 
where 𝑅,,(𝑡) is the autocorrelation of the noise. 
Assuming wide-band white noise with bilateral spectral density Swb, we’ll have a time 
constant Tn << Tf = RC. This means that the autocorrelation of the noise can be 
considered delta-like. So, to compute the effect of the filter on it we only need the 
value of the autocorrelation of the filter in zero. 
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This approximation corresponds to saying that, in the frequencies of interest, the 
noise spectral density is substantially flat. 
Therefore, we can write 
 

𝑦%ggg ≅ 𝑆VH𝐾VV(0) = 𝑆VH
1
2𝑇'

 

 
In order to compare different filters from the noise point of view, it is extremely 
useful to introduce the definition of noise equivalent bandwidth: it is defined with 
reference to a white noise input Sb as the bandwidth value to be  
employed for computing simply by a multiplication the output mean square noise. 
We want that 
 

𝑦%ggg = 𝑆VH2𝑓6 
 
and so 
 

𝑆VH2𝑓6 = 𝑆VH𝐾VV(0) 	=> 	𝑓6 =
1
4𝑇'

=
𝜋
2	𝑓/ 

 
This result can be verified in the frequency domain. In fact, it is 
 

𝑦%ggg = & 𝑆VH,ZL(𝑑𝑓
!"

#"

=	& 𝑆VH	|𝐻(𝑓)|%𝑑𝑓
!"

#"

≅ 𝑆VH 	& ³
1

1 + 𝑗2𝜋𝑓𝑇'
³
%

𝑑𝑓 = 	𝑆VH 		&
1

1 +	|2𝜋𝑓𝑇'}
%

!"

#"
	𝑑𝑓

!"

#"

=	𝑆VH 	
1

2𝜋𝑇'
	n𝑎𝑟𝑐𝑡𝑔|2𝜋𝑓𝑇'}o#"

!" =𝑆VH 	
1

2𝜋𝑇'
	¯
𝜋
2 − µ−

𝜋
2¶°

= 	𝑆VH 	
1
2𝑇'

 

 
that gives the same result once it’s equated with the definition of equivalent 
bandwidth provided above. 
 
8.3 The active RC integrator 
As already pointed out, the RC integrator seen so far has a unitary DC gain. This 
could be an issue whenever we want to combine the filtering action with a gain stage. 
This might be the case when we are in the early stages of the readout chain, where 
we want to have some gain in order to make the noise of the following stages 
completely negligible.  
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Figure 8.10 Block scheme of a generic readout chain. The input generator of a given stage can be brought 
back to the input dividing it by the overall gain of the previous stages. It’s clear that, the higher the gain, 
the more negligible this noise generator will be. 

 
N.B. The gain of a stage doesn’t change the S/N of it though. In fact, both the signal 
and the RMS value of the noise will be multiplied by the same factor G. Overall, the 
S/N would remain untouched. 
 
A stage with a certain gain can be achieved with active components, such as the 
operational amplifier. A low pass filter can be done easily adding a capacitor in the 
feedback network of an inverting stage, as shown in figure 8.11. 
 

 
Figure 8.11 Active RC integrator. 

 
All the rigorous steps done for the simple RC can be repeated here, with very few 
differences. Instead of repeating it, we’d rather discuss the circuit with an asymptotic 
analysis. The outcome will be the same. 
 
At DC, that is an inverting stage with a gain 
 

𝐺(0) = −
𝑅+
𝑅)
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At high frquencies, when the C acts pretty much as a short circuit, we have the 
inverting input of the amplifier connected to the output in a buffer configuration. The 
non-inverting pin is instead grounded, so we expect the output voltage to be stuck at 
zero as well for every input we have. So, it’s 
 

𝐺(∞) = 0 
 
It’s clear that we have a single pole, while the zero is at infinite frequency. To find 
the pole we should find the equivalent resistance seen by the capacitor. We could 
simply consider that the feedback fixes the inverting pin at virtual ground, so no 
current can flow there. So, the current can only flow inside the resistor in parallel, Rf. 
It’s 

𝑇' = 𝑅'𝐶' => 𝑓/ =
1

2𝜋𝑅'𝐶'
 

 
Overall, we have the same transfer function of the simple RC integrator, with an extra 
gain at DC. 
 

𝐻(𝑠) = 	−
𝑅'
𝑅=
	

1
1 + 𝑠𝑇'

 

 
N.B. That’s an inverting stage, hence the minus. It doesn’t really change anything, 
provided we’re still in the dynamic range of the circuits. 
 
The δ-response will be the same as above, with a value in zero magnified by a factor 
equal to the DC gain, i.e. 
 

ℎ(𝑡) = −
𝑅'
𝑅=
𝑒
# (
\+]+ 	1(𝑡) 

 
Figure 8.12 δ-response of the active RC integrator. If we consider the voltage axis positive going up, 
this waveform should actually be flipped. 

 
8.4 The mobile-mean low-pass filter 
A mobile-mean filter (MMF) is a filter with a weighting function like the one 
depicted in figure 8.13 
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Figure 8.13 Weighting function of the mobile-mean filter (MMF). 
 
In principle, this is the easiest filter one could think of: we’re only averaging for a 
finite amount of time the value of our input signal, with a weight constant for all the 
duration of the averaging operation. Instead, for the RC integrator, the weights 
decrease exponentially. 
It’s worth pointing out that this is, once again, a constant parameter filter, since it has 
the same weighting function for every tm chosen. 
 
The easiest way to confirm its low-pass filtering action is to see at its transfer 
function, i.e. at the Fourier transform of the δ-response. Since its δ-response (that is 
the weighting function flipped) is a rectangular function, we know its frequency 
domain representation is a cardinal sine, or sinc function, as represented in figure 
8.14. 

 
Figure 8.14 Weighting function of the mobile-mean filter (MMF). 

 
So, at low frequency we leave the signal unaltered, while at higher frequency it’s 
always more and more attenuated, with some ripples. 
It’s worth noting that there are some zeros in this transfer function. This means that 
there are frequencies whose effect on the output will be zero. This feature might be 
exploited to get rid of some disturbances at certain well-known frequencies, for 
example. 
 
The existence of the zeros of the MMF transfer function can be also explained in the 
time domain. In fact, one way to see the weight of each frequency component is to 
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check the area of the sine at that frequency that is integrated by the rectangle. It’s 
clear that there are certain frequencies, multiples of the fundamental one, that are 
exactly integrated over a certain number of periods. So, their contribution will be 
nihil. This is better clarified in figure 8.15. 

 
Figure 8.15 Explanation of the existence of zeros in the transfer function of the MMF. 

 
This filter is practically implemented following the idea depicted in figure 8.16. The 
biggest problem in the practical realization of these kind of filters comes from the 
analog delay line, implemented with very long transmission lines with limited 
performance. Even realizing delay lines of more than few tens of nanoseconds is 
impractical. This implies that the first zero, that gives us an idea of bandwidth of the 
filter, can be up to ~ )

%.	6O
= 50	𝑀𝐻𝑧. If the bandwidth of the signal is narrower than 

this value, we should look for other solutions. 
 

 
Figure 8.16 Conceptual scheme for the practical implementation of an MMF. 
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Let’s try to compare this filter with the passive RC-integrator. For the signal we can 
easily notice that they both have the same (unitary) DC gain. 
For the noise, let’s suppose we have a wide-band noise, as we’ve done with the RC-
integrator.  To have the same performances in terms of RMS noise at the output, we 
want that the result of 
 

𝑦%ggg ≅ 𝑆VH𝐾VV(0) 
 
to be the same for both the filters. So, we need the same value of the autocorrelation 
in zero for both of them. The autocorrelation of a rectangular signal is simply a 
triangular signal, with a peak equal to )

-/
. 

For the passive RC integrator instead, we found 𝐾VV(0) = 	
)
%-+

 . 

So, to have the same RMS noise we simply need to choose  
 

𝑇 =	2𝑇' 
 
This result confirms our previous intuitive approximation of the RC-integrator as an 
average over a period equal to 2 time constants. 
 

 
Figure 8.17 Comparison between the transfer function of a RC integrator (top) and the one of an MMF 
(bottom). 
 
8.5 Final considerations 
 
8.5.1 Ideal behavior 
If our signal has frequency components squeezed at low frequencies, we'd like a 
"rectangular" filter in the frequency domain: this filter simply does not exist. In fact, 
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its equivalent in time would be a cardinal sin, that has two problems: it has an infinite 
duration of the response to the stimulus, and moreover is anti-causal: that would 
imply that the system is reacting to a delta input before its application, that is clearly 
not physically meaningful. 

 
Figure 8.18 The cardinal sine has an infinite duration, and also it’s not zero for t<0. It clearly cannot 
model the δ-response of any physical system. 
 
However, this delta response can be implemented in the digital domain, where the 
exploitation of memories makes the anti-causality of a filtering system feasible. 
It's worth noticing that it is possible to realize a rectangular in the time domain. In 
fact, the MMF does that, but its practical implementation is often limited, as 
discussed above. 
 
8.5.2 Cascading elementary cells 
We can easily obtain high-order LPF by cascading the simple configurations 
discussed above. 
In general, for LPF with real poles, it's better to compute the equivalent noise 
bandwidth in the time domain, since it's easier to unravel the integrals to get there.  
For instance, for a second order RC, we’d have a δ-response 
 

ℎ(𝑡) =
𝑡
𝑇'%

𝑒
# (
-+ 	1(𝑡) 

 
and an RMS value at the output 
 

𝜎ZL(%ggggggg = 𝑆aH𝑘DD(0) = 	𝑆aH 	& ¼
𝑡
𝑇'%

𝑒
# (
-+½

%

𝑑𝑡
!"

.
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To solve the integral, we should integrate by parts finding the value of the noise 
equivalent bandwidth: 
 

& ¼
𝑡
𝑇'%

𝑒
# (
-+½

%

𝑑𝑡
!"

.
= r−

𝑡%

𝑇'b
	
𝑇'
2 	𝑒

##%(-+ s
.

!"

−	& −
2𝑡
𝑇'b

	
𝑇'
2 	

!"

.
𝑒
#%(-+ 	𝑑𝑡

= r−
𝑡
𝑇'P

	
𝑇'
2 	𝑒

##%(-+ s
.

!"

−	& −
1
𝑇'P

	
𝑇'
2 	

!"

.
𝑒
#%(-+ 	𝑑𝑡 = 	

1
4𝑇'

	 

 
8.6 A practical example 
Let’s suppose to have a rectangular signal we want to low-pass filter. Suppose we 
can only use a simple RC integrator. Given that the duration of our signal is Ts and 
the amplitude is Vs, how should we set the pole of our filter to obtain the best result? 
So, how long should our exponential tail last?The signal is  
 

𝑦ZL( =	& 𝑉O	𝑟𝑒𝑐𝑡 ¾
𝜏 − 𝑇O2
𝑇O

¿	
1
𝑇'
	𝑒
#(0#1-+ 𝑑𝜏

(0

#"

=
𝑉O
𝑇'
	𝑒
#(0-+ & 𝑒

1
-+ 	𝑑𝜏 =	

(0

.
	𝑉O	𝑒

#(0-+ 		r𝑒
1
-+s

.

(0

=	𝑉O 	¼1 − 𝑒
#(0-+½ 

 
N.B. That’s the way we write a rectangular signal with duration Ts that starts at t=0.  
 
For the noise instead, as already pointed out, we have 
 

𝜎ZL(%ggggggg = 𝑆aH𝑘DD(0) = 𝑆aH 	
1
2𝑇'

 

So, the S/N will be 
 

𝑆
𝑁 =	

𝑉O 	¼1 − 𝑒
# (
-+½

À𝑆aH 	
1
2𝑇'

=	
𝑉O	Á2𝑇' 	¼1 − 𝑒

# (
-+½

Á𝑆aH
 

 
Now, we want to find the best possible Tf, i.e. the Tf that would maximize that S/N.  
Let’s first verify that there is a maximum. 
 
• For 𝑇' → 0, the S/N → 0. 
• For 𝑇' → ∞, it is that  J

Q
	~	Á𝑇' 		

(
-+
=	 (

c-+
	→ 0. 

• There is at least one nonzero value in the middle. 
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So, since that function is continuous, we expect to have a maximum somewhere. 
To find it, we should set 
 

𝑑
𝑑𝑇'

§
𝑆
𝑁© = 0 

 
So, it’s, with tm = Ts, 
 

𝑑
𝑑𝑇'

Â	Á𝑇' 	¼1 − 𝑒
#	-1-+½Ã =

1
2Á𝑇'

	¼1 − 𝑒
#-1-+½ − Á𝑇'	𝑒

#	-1-+ 	
𝑇O

(𝑇')%
= 0 

 
and so 

¼1 − 𝑒
#-1-+½𝑇' − 2	𝑇O	𝑒

#	-1-+ 	= 0 

 

	𝑒
#	-1-+ r𝑇' 	¼	𝑒

	 -1-+ − 1½ − 2	𝑇Os = 0	 

    

	𝑒
	 -1-+ =

2	𝑇O + 𝑇'
𝑇'

 

This can be graphically solved finding:	 
 

𝑇' = 0,8	𝑇O 
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    CHAPTER      9 

Switched-parameter Low 
Pass Filter 
In this chapter we will introduce the switched parameter filter. When some basic 
properties of the signal waveform of interest are known such as its arrival time, 
duration or shape, the filter can be switched on only when the signal is present. 
This can be achieved by employing a switch activated by a synchronization signal. 
It will be shown that this different approach can be used in different applications. 
 
 
9.1 Introduction 
Under the hypothesis of linearity, the output 𝑦 of any filter can be computed as a 
weighted sum of input values 𝑥 taken at various time α. The weights of the filter 
represent the effect of the input at time 𝛼 on the output at time 𝑡<. In continuous-time 
signal filtering this operation consists in an integral:  

 

𝑦(𝑡<) = & 𝑤(𝛼)𝑥(𝛼)𝑑𝛼
(0

#"
			 

 
Let’s consider the basic circuit shown in figure 9.1: 
 

 
Figure 9.1 Switched-Parameter LPF 
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• If the switch S is closed the circuit behaves like a constant-parameters low pass 
filter. For a constant-parameters filter we saw that the weighting function is the 
delta response of the circuit shifted by 𝑡! and reversed. 

 

𝑦(𝑡<) = & 𝑤(𝛼)𝑥(𝛼)𝑑𝛼
(0

#"
= & ℎ(𝑡< − 𝛼)𝑥(𝛼)𝑑𝛼

(0

#"
 

 
• If the switch S is open the circuit is in hold and no current can flow, so the input 

can no longer affect the output node. 
 
Usually, the opening of the switch is related to a sync signal that tells us when the 
signal we want to analyze is present. 
Depending on the choice of the time constant, the filter can have different behaviors. 
In figure 9.2 the behavior of the filter for different values of the time constant is 
shown.  

Figure 9.2 Different behaviors depending on RC 
 
 
When the time constant of the low pass filter Tf is much lower than TG (where TG is 
the time for which the switch is closed), the circuit behaves like a Sample and Hold. 
In this case the circuit tracks almost instantaneously the input voltage when the switch 
is closed. 
If the time constant Tf is of the same order of TG, the circuit behaves like a switched 
RC low pass filter, performing an exponential average of the input signal. 
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The last case is when the time constant Tf is much higher than TG. In this situation a 
true integration of the input signal is made. This type of filter is called Gated 
Integrator. 
 
9.2 Sample & Hold  

 
Figure 9.3 Weighting function of S&H 
 
Sample & Hold circuits are a fundamental block in data acquisition systems, mostly 
because they are widely used in analog to digital conversion. In this case the goal is 
very simple: they have to sample the analog input signal and hold it at least for the 
time needed by the ADC to convert it into a digital signal. 
The weighting function is identical to a constant parameter RC filter, thus presenting 
a unity DC gain  
 

𝑊<(0) = & 𝑤<(𝛼)𝑑𝛼
"

.
= 1 

 
In real world applications, the width of the Sample & Hold weighting function cannot 
assume any value, but it is limited by the finite value of the time constant 𝑇', which 
depends on real components present inside the system, mainly the resistance of fast 
switching devices and the capacitance used to store the information. One of the main 
challenges in the design of a Sample and Hold is the minimization of the acquisition 
time, that is linked with 𝑇'. Today the exploitation of discrete components allows the 
design of systems featuring a 𝑇' down to few nanoseconds, while integrated-circuits 
technologies can provide a 𝑇' of only some picoseconds, thanks to lower parasitic 
capacitances. 
The drawback of a very narrow weighting function in the time domain is a wide 
response in the frequency domain, and therefore a limited effect on noise filtering. 
If a wide band noise is present, featuring a bilateral spectral density Sb=2kTR due to 
the resistor, the Sample & Hold will play the role of an RC integrator. Under the 
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hypothesis of white noise, the noise autocorrelation function is shaped as a delta pulse 
centered in 0. The noise power present at the output can be computed as follows: 

 

𝑦\% = & 𝑅66(𝜏)𝑘VV(𝜏)𝑑𝜏 =
"

#"
𝑆H𝑘VV(0) 

 
In case of a S&H, the weighting function of the filter is: 
 

𝑤(𝛼) =
1
𝑇'
𝑒
#((0#d)-+ 1(𝑡< − 𝛼) 

 

From which the autocorrelation is derived 

𝑘VV(𝜏) =
1
2𝑇'

𝑒
#|1|-+ 

𝑦\% = 2𝑘𝑇𝑅 ∙
1
2𝑇'

= 2𝑘𝑇𝑅 ∙
1
2𝑅𝐶 

𝑦\% =
𝑘𝑇
𝐶  

As soon as we reduce the value of  𝑇' we increase the value of the autocorrelation in 
zero, and so also the output total noise. 
Computations show also an important result: noise power present at the output is 
independent on the value of R and gets higher as the capacitance C gets smaller.  

 
 

9.3 Gated integrator  
Let’s analyze now the last case of the figure 9.2, that is a switched-parameters RC 
network featuring a time constant of the RC network Tf much higher than TG.  
 

 
Figure 9.5 Weighting function of GI 
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In this case, the circuit performs a true integration of the input signal. This filter is 
particularly useful when a relatively slow signal (so that it is constant over the 
integration window) must be recovered in presence of strong wide band noise. The 
name of this filter is Gated Integrator (GI).  
 
The DC gain of a Gated Integrator is much lower than one 
 

𝐺 = 𝑊<(0) = & 𝑤<(𝛼)𝑑𝛼 =
𝑇e
𝑇'
≪ 1

"

.
 

 
The filter weighting function can be approximated with 
 

𝑤<(𝛼) =
1
𝑇'
∙ 𝑟𝑒𝑐𝑡-2(𝛼 − 𝑡< +

𝑇+
2 ) 

 
Where the rect signal is defined as 

 

𝑟𝑒𝑐𝑡-2(𝑡) = Å
1		𝑓𝑜𝑟 − 𝑇+ 2Ç ≤ 𝑡 ≤ 𝑇+

2Ç

0	𝑓𝑜𝑟	|𝑡| > 𝑇+
2Ç

 

 
Computing the Fourier transform we have   
 

𝐹 §𝑟𝑒𝑐𝑡-2(𝑡)© = & 𝑒#$%&'(𝑑𝑡 =
1

−𝑗2𝜋𝑓 [𝑒
#$%&'(]

#
-2
%

			
-2
%

-2
%

#
-2
%

=
𝑒$&'-2 − 𝑒#$&'-2

2𝑗 ∙
𝑇+
𝜋𝑓𝑇+

= 𝑇+ ∙
sin 𝜋𝑓𝑇+
𝜋𝑓𝑇+

 

 
The ratio between a sine wave and its argument is the well-known cardinal sine 

 

𝑠𝑖𝑛𝑐-2(𝑓) =
sin 𝜋𝑓𝑇+
𝜋𝑓𝑇+

 

 
The modulus of a Gated Integrator transfer function then is 
 

|𝑊<(𝑓)| =
𝑇+
𝑇'
∙ 𝑠𝑖𝑛𝑐-2(𝑓) 

 
Exploiting the symmetry of the rect shape, the autocorrelation can be computed 
convolving two identical rect signals, thus obtaining a triangular shape 
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𝑘''V = 𝑤<(𝛼) ∗ 𝑤<∗(−𝛼) =
1
𝑇'
∙ 𝑟𝑒𝑐𝑡-2(𝑡) ∗

1
𝑇'
	 ∙ 𝑟𝑒𝑐𝑡-2(𝑡) = 𝑇𝑔 ∙ ¼

1
𝑇'
½
%

∙ 𝑡𝑟𝑖-2(𝑡) 

 
The tri function is defined as 
 

𝑡𝑟𝑖-2(𝑡) =

⎩
⎪
⎨

⎪
⎧
	
						(

𝑡
𝑇+
+ 1)					𝑓𝑜𝑟 − 𝑇+ < 𝑡 ≤ 0

	
(−

𝑡
𝑇+
+ 1)			𝑓𝑜𝑟	0 < 𝑡 < 𝑇+

 

 
The same approach we used to calculate the autocorrelation in time can be used to 
extract its Fourier transform. Since in time the autocorrelation is the convolution of 
two rect, in the frequency domain we will have the product of their Fourier transform, 
that is a square sinc as shown in the next formula: 
 

𝐹|𝑤<(𝛼) ∗ 𝑤<∗(−𝛼)} = |𝑊<(𝑓)|% = ¼
𝑇+
𝑇'
½
%

∙ 𝑠𝑖𝑛𝑐-2
%(𝑓) 

 

 
Figure 9.6 Time Vs. frequency domain 
 
9.3 Gated Integrator S/N improvement 
Differently from the Sample&Hold, the Gated Integrator can have a quite broad 
weighting function and so a narrow response in the frequency domain; therefore, a GI 
can be an effective option to reduce white noise. Let’s consider a constant input signal 
over the integration time 𝑇e and a broadband input noise power limited by a single 



Switched-parameter low pass filters 

 

 101 

pole (for example the one of the preamplifier) with a time constant much slower of 
𝑇e. Under these hypotheses, we can consider the noise as white. 

𝑥6% = 𝑆H2𝑓6 =
𝑆H
2𝑇6

 

The signal at the output of the filter is then: 
 

𝑦J = 𝑥J ⋅
-3
-+
= 𝑥J𝐺       i.e. with gain     𝐺 = -3

-+
= 1 

 
The output noise power, under the condition of white input noise, is 

 
𝑦6%=∫ 𝑅66(𝜏)𝑘''V(𝜏)𝑑𝜏 =

"
#" 𝑆H𝑘''V(0) 

 

𝑦6% = 𝑆H
𝑇e
𝑇'%

=
𝑆H
𝑇e
(
𝑇e
𝑇'
)% =

𝑆H
𝑇e
𝐺% =

𝑆H
2𝑇6

2𝑇6
𝑇e

𝐺% = 𝑥6%
2𝑇6
𝑇+

𝐺% 

 
It is possible now to calculate the improvement due to the Gated Integrator on the 
signal to noise ratio: 

(
𝑆
𝑁)8 =

𝑦O
Á𝑦6%

=
𝑥O
Á𝑥6%

À
𝑇e
2𝑇6

= (
𝑆
𝑁),À

𝑇e
2𝑇6

 

 
The output signal increase as 𝑇eand the noise as Á𝑇e, therefore the Signal to Noise 
ratio increases as the square root of the integration time Á𝑇e.  
 

 
 

Figure 9.7 Effect of a GI on a constant signal and on white noise  
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It is also possible to see that the larger is the difference between the filter time constant 
and the autocorrelation width, the larger is the gain. This is intuitive from the 
frequency point of view: we are increasing the part of the noise spectrum we are 
removing with the filter.  
 
9.3 Gated integrator optimization  
In this paragraph we will discuss how to properly size a gated integrator to reach an 
optimal Signal-to-Noise ratio, given two of the most common input signal shapes.  
 
9.3.1 Rect pulse signal  

 
Figure 9.8 rect signal (blue) with duration Tp and GI (red) with duration Tg 

 
Let’s consider a rect signal with amplitude Vp and duration Tp. In order to evaluate 
the signal at the output of the GI filter, the following integral must be computed. It’s 
a straightforward conclusion that its maximum value is for Tg=Tp.  
 

𝑦𝑠 = : 𝑉𝑝𝑑𝑡
𝑡𝑚

−∞
= : 𝑉𝑝𝑑𝑡 = 𝑉𝑝𝑇𝑔

𝑇𝑔

0
 

 
For what concerns the noise contribution: 
 

𝑛𝑦2! = 𝑆𝑏 ∙ 𝑘𝑤𝑤(0) = 𝑆𝑏 ∙ 𝑇𝑔 
 
The signal to noise ratio in this case is a monotone function and it is maximized when 
all the signal energy is acquired (Tg=Tp). 
 
 

𝑆𝑁𝑅 =
𝑉/ ∙ 𝑇+

X𝑇+ ∙
𝑆6L
2

=
𝑉/

X𝑆6L2

∙ Á𝑇+ 

 



Switched-parameter low pass filters 

 

 103 

9.4.1 Exponential decay pulse signal 
 

 
Figure 9.9 Exponential signal (blue) with time constant Tp and GI (red) with duration Tg 
 
In this case the optimal choice of Tg is not intuitive. Let’s compute the SNR with a 
similar approach  
 

𝑠8 = & 𝐴
-2

.
∙ 𝑉/𝑒

# (
-!𝑑𝑡 = 𝐴 ∙ 𝑉/ ∙ 𝑇/ ∙ (1 − 𝑒

#
-2
-!) 

 

𝑆𝑁𝑅 =
𝑉/ ∙ 𝑇/

X𝑆6L2 ∙ 𝑇/

∙
(1 − 𝑒

#
-2
-!)

À
𝑇+
𝑇/

 

 
This functional dependence is not monotone and has a maximum.  
Imposing  

𝑥 =
𝑇+
𝑇/

 

 
Computing the derivative and equating it to zero  
 

𝑚𝑎𝑥 §
(1 − 𝑒#,)

√𝑥
© 		𝑓𝑜𝑟	𝑥 = 1,25 

 
The Signal-to-Noise ratio is thus maximized for Tg=1.25Tp 

 
It is worth noting that, in both these cases, we started to integrate the signal as soon 
as the signal is present avoiding taking in consideration if this is the best starting point 
for our weighting function. In both the cases this assumption is correct since the 
maximum of the signal is at its beginning, we will see in the future this is not always 
the case. 
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9.4 Gated integrator vs. Mobile Mean filter comparison  
In the previous chapter, we have studied the Mobile Mean Filter. At first sight, we 
could state that a MMF and a GI feature the same weighting function, which translates 
into an identical Signal-to-Noise ratio improvement. 
However, it is extremely important to point out some key differences: 
• the mobile mean filter is a constant parameter filter. This means that its output 

is the running average of the input signal for every time instant. The Gated 
Integrator, instead, is a not constant parameter filter: its output it is not a 
waveform in time but just a value representing the signal integral over the filter 
window. 

• the shape of the weighting function of the gated integrator does not depend on a 
delay line, so it is possible to modify it by simply changing the activation time 
of the switch. This gives the designer the freedom to create a GI filter with any 
time width (taking in consideration the technological issues connected to the 
turning on and off of the switch). 

 
9.5 GI compared to other LPF 
Let’s try now to make a fair comparison between a gated integrator and a constant 
parameter RC filter. First of all, we have to define a way to compare the results: one 
typical way is to fix a unity DC gain for both filters and then compare the noise outputs 
of them. 

 
Figure 9.10 RC Vs. GI integrator (time domain) 
 
In case of unity DC gain the two noise output powers are: 
 

𝑛eq% = 𝑆H ∙
1
𝑇+

 

𝑛\]% = 𝑆H ∙
1
2𝑅𝐶 
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Therefore, they produce the same output noise power, if the following condition is 
verified: 
 

𝑇e = 2𝑅𝐶 
 

For this reason, we are used to say the RC low pass filter in the time domain is 
equivalent to an average on two-time constants, as discussed with the MMF. 

 
Figure 9.11 RC Vs. GI integrator (frequency) 
 
As shown in figure 9.11, the transfer function of the gated integrator goes to zero at 
frequencies 𝑓5 =

5
-3

 .This property can be used to cancel out specific disturbances at 

frequencies 𝑓r = 𝑓5 (for example radio frequency disturbs or  50Hz disturbs due to 
the standard power supply). 
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    CHAPTER     10 
 

Filtering: Switched-Parameter 
Averaging Filters 
 
The scope of this chapter is to continue and conclude the discussion about low 
pass filters. Two examples of digital filters will be presented, focusing on their 
operating principles, signal to noise ratio performance and making a comparison 
with their corresponding analogue version. 
Then, two new analogue filters will be introduced: they are particularly useful for 
repetitive signals, showing that a proper sampling can improve the signal to noise 
ratio.  
 
10.1 Introduction 
Nowadays, the fast development of more and more advanced digital circuits has 
been leading to the digital implementation of filters in many cases. Digital filters, 
indeed, have many advantages over their analog counterparts: they do not have any 
internal noise sources, they do not suffer from zero-level drifting, they do not suffer 
from variable saturation (in analog filters the signal cannot normally be larger than 
the power supply), they do not have any intrinsic nonlinearities and they do not 
suffer from long holding-times leakage (leakage usually becomes a problem in 
analog filters for holding times longer than 1s). 
On the other hand, analog filters can often perform real-time processing of 
waveforms on faster time scales than their digital counterpart, and thus they are still 
the solution of choice in several applications. 
In the following paragraphs, we will compare analog and digital filters, showing that 
analog filters always outperform their digital counterparts. 
 
10.2 Discrete Time Integrator (DTI) 
If we are dealing with a sampled signal, we can choose to use the Discrete-Time 
Integrator (DTI), which can be seen as the discrete equivalent to the Gated Integrator 
(GI). 
As we have seen in the previous chapter, the GI basically computes an average of 
the input signal over a certain time window. The analog filtering action can be 
mimicked using a digital approach, that is taking 𝑁 samples with a constant weight, 
sum them and divide the result by a given “value”. 
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Figure 10.1 constant signal, white noise and weighting function of a Discrete-Time Integrator 
 
For simplicity, we start to analyse a constant DC signal 𝑠, and a wide band stationary 
noise 𝑛, with autocorrelation width 2𝑇6 , like the one in figure 10.1. Each sample is 
multiplied by the weight 𝑃 and summed, up to a total of 𝑁 samples. Choosing a 𝑇e 
interval and a sampling frequency  𝑓J = 1/𝑇J we find a number of samples equal to  
𝑁 = 𝑇e/𝑇J.  
In these conditions, the DC Gain of the DTI is equal to 𝑁 ∙ 𝑃 . 
Thus, unitary gain can be achieved by choosing 𝑃 = )

Q
 . As we will see in a few 

lines, the choice of P will not have any impact on the final SNR. 
We can similarly calculate the output due to noise at the input: the output will be 
equal to the sum of all the “noisy samples”  
 

𝑛8 =�𝑃 ∙ 𝑛,,5

Q

5R)

 

 
Thus, the mean square value will be 
 

𝑛8
% = 𝑃%|𝑛,,)% + 𝑛,,%% +⋯+	𝑛,,)𝑛,,% +⋯}ggggggggggggggggggggggggggggggggggggggggggggg

= 𝑃%|𝑛,,)
% + 𝑛,,%

% +⋯+	𝑛,,)𝑛,,% +⋯} 
 
If we consider the noise as white (or more realistically, we hypothesize that the noise 
autocorrelation time TN is much smaller that the sampling time TS), the noise samples 
will be uncorrelated with each other, and the cross products will be null 
|𝑛,,)𝑛,,% =	𝑛,,%𝑛,,P = 0}. If we also consider the noise as stationary (such that that 
𝑛,,)

% = 𝑛,,%
% = 𝑛,,5

% = 𝑛,
%) the mean square noise becomes  
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𝑛8
% = 𝑃%|𝑛,,)

% + 𝑛,,%
% +⋯+	𝑛,,)𝑛,,% +⋯} = 𝑁 ∙ 𝑃% ∙ 𝑛,

%	 
 
As with the time-continuous GI, the output noise increases linearly with the 
integrating time TG (remember that 𝑁 = 𝑇e 𝑇J⁄  ). 
We can now calculate the SNR: 
 

A
𝑆
𝑁B𝑦

= 𝑁 ∙ 𝑃 ∙ 𝑆𝑥	

C𝑁 ∙ 𝑃2 ∙ 𝑛𝑥
2
=	D𝑁 ∙ A𝑆𝑁B𝑥

 

 
As expected, we see that the choice of P does not affect the final SNR. The reason 
becomes obvious if we consider how both the signal and the noise are similarly 
amplified by a factor P. 
 
10.2 Discrete-Time Exponential Averager  
In the previous paragraph, we obtained the Discrete-Time integrator by mimicking 
the weighting function of the Gated-integrator. Similarly, we can define the 
weighting function of the Discrete-Time Averager by mimicking the weighting 
function of a time-continuous Exponential filter.	 
 

 
Figure 10.2 constant signal, white noise and weighting function of a Discrete-Time Averager 
 
We expect the weighting function to be 𝑤5 = 𝑃 ∙ 𝑟5, with 𝑟 < 1 
 
If we now apply a constant input signal Sx, the signal at the output will be 
 

𝑆8 =�𝑃 ∙ 𝑆, ∙ 𝑟5
"

5R.

= 𝑃 ∙ 𝑆, ∙
1

1 − 𝑟 
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where the second step is obtained taking into account the geometric series. 
A geometric series: 

� 𝑥5
"

5R.
 

  
for a value of |𝑥| < 1  it has a convergent behavior, so the series sum exists and its 
value is 
 

� 𝑥5
"

5R.
= lim

6→"
� 𝑥5

6

5R.
= lim

6→"

1 − 𝑥6!)

1 − 𝑥 =
1

1 − 𝑥 

 
The DC Gain will thus be  3

)#2
 .  

Regarding noise, if we consider a white input noise (such that all cross products 
are null), the output noise will be 
 

𝑛8 =�𝑃 ∙ 𝑛,,5 ∙ 𝑟5
"

5R.

 

 
The mean square output noise will be 
 

𝑛8
% = 𝑃%|𝑛,,)

% + 𝑛,,%
% ∙ 𝑟% +⋯+	𝑛,,5

% ∙ 𝑟%5 +⋯} 
 

If we also consider the input noise as stationary 
 
𝑛8

% = 𝑃% ∙ 𝑛,
%(1 + 𝑟% +⋯+	𝑟%5 +⋯) = (Geom. series) = 𝑃% ∙ 𝑛,

% ∙ )
)#2*

 
 
We can thus calculate the SNR: 
 

A
𝑆
𝑁B𝑦

=
𝑃 ∙ 𝑆𝑥 ∙

1
1 − 𝑟	

C𝑃2 ∙ 𝑛𝑥
2 ∙ 1
1 − 𝑟2

=	
D1− 𝑟2
1 − 𝑟 ∙ A𝑆𝑁B𝑥

= A
𝑆
𝑁B𝑥

H1 + 𝑟
1 − 𝑟 

 
If we consider the attenuation factor close to 1 such that (1 − 𝑟) 	≪ 1 (which means 
choosing the sampling period TS much shorter than the decay time), then (1 + 𝑟) ≃
2. Thus 

A
𝑆
𝑁B𝑦

≃ A
𝑆
𝑁B𝑥

H 2
1 − 𝑟 
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Question: What is the SNR at the output of the Discrete Exponential-Averager if 
an exponential signal is applied at the input? 
 
Let’s take a signal  𝑆, = 𝑉3𝑒#( -6⁄  
For this example, we choose the filter’s time constant equal to the signal’s time 
constant, such that 𝑤5 = 𝑃 ∙ 𝑒#5∙-7 -6⁄  . In order to simplify the calculations, we set 
𝛼 = 𝑒#-7 -6	⁄  .  
We can now proceed by calculating the S/N: 

𝑆8 =�𝑆, ∙ 𝑃	𝑒#5∙-7 -6	⁄
"

5R.

	= �𝑉3	𝑒#5∙-7 -6	⁄ ∙ 𝑃	𝑒#5∙-7 -6	⁄
"

5R.

=�𝑉3	𝑃	𝑒#%5∙-7 -6	⁄
"

5R.

= 𝑉3	𝑃 ∙�𝛼%5
"

5R.

 

 
if we now apply the Geometric series 
 

𝑆8 =		
𝑉3 ∙ 𝑃
1 − 𝛼% 

 
Now for the noise. In case of stationary white noise at the input: 
 

𝑛8
% =�|𝑛, ∙ 𝑃	𝑒#5∙-7 -6	⁄ }%

"

5R.

= 𝑛,
% ∙ 𝑃% 	�𝛼%5

"

5R.

= 𝑔𝑒𝑜𝑚. 𝑠𝑒𝑟𝑖𝑒𝑠 =
𝑛,

% ∙ 𝑃%	
1 − 𝛼%  

 
Thus  

A
𝑆
𝑁B𝑦

=
	 𝑉𝑃 ∙ 𝑃1 − 𝛼2	

H𝑛𝑥
2 ∙ 𝑃2	

1 − 𝛼2

= A
𝑆
𝑁B𝑥

∙
1

D1− 𝛼2
 

 
We can further manipulate this expression to obtain a simpler result. The key is to 
consider that in a well-engineered system, 𝑇J ≪ 𝑇3	(intuitively, the sampling time 
should be much smaller than the time constant to obtain many samples).  
Thus 
 

(1 − 𝛼) = |1 − 𝑒#-7 -6	⁄ } ≃ 𝑇J 𝑇3	⁄  , and  (1 + 𝛼) = |1 + 𝑒#-7 -6		⁄ } ≃ 2. 
 
Therefore if  𝑇J ≪ 𝑇3 

A
𝑆
𝑁B𝑦

= A
𝑆
𝑁B𝑥

∙
1

D1− 𝛼2
= A

𝑆
𝑁B𝑥

∙
1

D(1+ 𝛼)(1− 𝛼)
≃ A

𝑆
𝑁B𝑥

∙ H
𝑇𝑃	
2𝑇𝑆
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Until now we have analyzed digital filters under the assumption of total lack of 
correlation between noise samples; in this scenario, it seems that by increasing 
number of samples we can outperform analogue filters. What does really happen if 
we increase the number of samples within a fixed time window? To answer this 
question, let’s go back to the DTI and compare it with its analogue version. 
 
10.3 Discrete Time Integrator versus Gated Integrator 
For our analysis, we will now consider a time window 𝑇e in which the Discrete Time 
Integrator weighting function (in red in figure 10.5) has 𝑁 deltas, with 𝑁 =	𝑇e/𝑇J, 
with an amplitude equal to 1/𝑁, and the Gated Integrator (in blue) has a rectangular 
shape with constant value 1/𝑇e. 
To make a simple comparison we use two filters, both with a unity DC Gain 
 

𝑠, = 𝑠8 
 
so, we have to compare only their output noise. 
 

 
Figure 10.5 weighting function of a DTI 
 
Under the assumption of DC signal 𝑠, and wide-band noise 𝑆9 with correlation 
width 2𝑇6 ≪ 𝑇J , the improvement of the signal to noise ratio in these two situations 
is 
 

Gated Integrator:  	µJ
Q
¶
8
= X -3

%-9
∙ µJ

Q
¶
,
  

 
Discrete-Integrator: 	µJ

Q
¶
8
= √𝑁 ∙ µJQ¶,

 

 
It seems that by increasing the number of samples 𝑁, which means reducing 𝑇J, it is 
possible to obtain a better SNR improvement with a DTI rather than with a GI. 
However, we have to pay attention at a key point: increasing the number of samples 
requires the reduction of 𝑇J and this may violate our assumption of uncorrelated 
samples. When the assumption is no more valid, the improvement factor is no more 
equal to the square root of 𝑁. 
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At this point we have to answer the following question: what is the minimum 
acceptable sampling time for the DTI? 
Of course until 𝑇J ≫ 2𝑇6 the noise samples are uncorrelated, but when 𝑇J becomes 
equal to 2𝑇6 we are playing around the limit and we have to remember that the real 
shape of the noise autocorrelation is an exponential, not a triangle, so there is some 
sort of correlation. This becomes evident if we take a look at the problem in the 
frequency domain. The spectral density of the DTI can be easily calculated as the 
sampled spectrum of the GI.  
The final spectrum will have replicas of the GI’s spectrum spaced 1 Tx⁄  from each 
other, as sketched in figure 10.6.  
 

 
Figure 10.6 weighting function of a GI and a DTI in the frequency domain 
 
Note that the output noise is proportional to the area of the filter spectrum. This 
means that the more replicas we have before the noise cutoff frequency, the higher 
the output noise will be. 
Thus, with a smaller and smaller sampling time TS, the filter replicas move away 
from each other resulting into the less and less noise at the output.  

 
Figure 10.7 weighting function of a DTI in the frequency domain with different values of Ts 
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If we keep increasing the number of samples N, we will eventually reach a point 
where only a single replica counts to determine the output noise.  
This situation is the same as that of the Gated-Integrator 

 
Figure 10.8 weighting function of a DTI in the frequency domain with different values of Ts 
 
In conclusion we can always improve the digital signal to noise ratio, increasing the 
number of samples 𝑁, but the upper limit will be the performance obtained with an 
analogue filter due to the correlation between the noise samples. 
Let’s now analyse the difference between the Gate Integrator and the Discrete Time 
integrator in time domain. 
 

 
 
Figure 10.9 GI vs DTI in time domain 
 
These figures show the autocorrelation of wide-band stationary noise and the 
weighting function of the two filters; from the previous lectures we know that under 
this condition it is important to know the value of these two autocorrelations in the 
origin to calculate the output noise. We zoom around 𝜏 = 0 
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Figure 10.10 GI vs DTI in time domain 
 
The output noise is the product of the input noise and the value of the autocorrelation 
of the filter’s weighting function. 
 

𝑛8
% = 𝑅yy(0) = & 𝑅zz(𝜏) ∙ 𝑘VV(𝜏)𝑑𝜏

"

#"
 

 
For the gated integrator, if we consider TG>>TN, the output noise can be simply 
approximated as 
 

𝑛8
% = )

-3
∙ (Area	of	𝑅zz). 

 
For the Discrete-Integrator instead, the autocorrelation function 𝑘VV,rq(𝜏) is 
sampled. For this reason, the integral can be calculated by sampling 𝑅zz with the 
deltas of 𝑘VV,rq, and adding up all the samples  
 

 
 
Figure 10.11 GI vs DTI in the time domain 
 
 

𝑅yy(0) = & 𝑅zz(𝜏) ∙ 𝑘VV,rq(𝜏)𝑑𝜏
"

#"

≃ & 𝑅zz(𝜏) ∙ 𝑘VV,rq(0)� 𝛿(𝜏 − 𝑘 ∙ 𝑇J)
5

𝑑𝜏
"

#"

= 𝑘VV,rq(0)� 𝑅zz(𝑘 ∙ 𝑇J)
5

=
𝑇J
𝑇e
� 𝑅zz(𝑘 ∙ 𝑇J)

5
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In the last formula 
 

𝑅yy(0) ≃
𝑇J
𝑇e
� 𝑅zz(𝑘 ∙ 𝑇J)

5
 

 
we can consider 
 

𝑇J ∙� 𝑅zz(𝑘 ∙ 𝑇J)
5

 

 
as the area of the scaloid that approximates 𝑅zz, as sketched in figure 10.12. Its 
area will be greater than that of 𝑅zz , and thus 𝑛8

% will be greater than that of the 
Gated-Integrator.  

 
Figure 10.12 DTI: approximation of the integral in the time domain 
 
If we decrease TS, the scaloid will better approximate 𝑅zz, to the point where its 
area will become, for 𝑁 → ∞	, equal to the area of 𝑅zz that is the result that we 
obtain with a GI. 
 

 
Figure 10.13 DTI: approximation of the integral in the time domain 
 
10.4 Boxcar Integrator (BI) 
The Boxcar Integrator is a filter having parameters that vary over time; it is 
particularly suitable to measure the amplitude of repetitive signals buried in white 
noise. We will show that a BI can be seen as some sort of expansion of the Gated 
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Integrator. First, let’s step back to the GI to discuss one important limit of this filter. 
In order to improve the SNR obtained with a GI, we can’t simply enlarge indefinitely 
the time window 𝑇e of the filter itself. In fact, enlarging the integration window can 
lead to a SNR improvement only if we collect the signal all over the new time 
window. It is quite intuitive, for example, that the integration should not occur when 
there is only noise, otherwise the SNR would be impaired. 
Nevertheless, we could consider the integration of multiple occurrences of the 
signal, if more than one sample is available. This approach is similar to increasing 
the number of samples with digital filters. 

 
 
Figure 10.14 Boxcar Integrator scheme 
 
The schematic of a Boxcar Integrator is shown in figure 10.14. It consists of a switch 
and a RC series network followed by a buffer; the switch is closed multiple times 
during the acquisition, without any reset of the capacitor.  
With a proper selection of the filter parameters, the circuit implements the analog 
combination of two functions: 
 

1) Sampled Acquisition by Gated Integrator 
2) Exponential averaging of samples 

 
To this aim, a basic hypothesis must hold, that is 𝑇{ = 𝑅𝐶 ≫ 𝑇e. In this scenario, 
we can derive the weighting function of this filter, starting from a key difference 
with a GI: in a classical GI, the capacitor is always reset between two consecutive 
acquisitions. In other words, the amount of charge on the capacitor of a GI at the 
beginning of the measure, i.e. when a pulse arrives, is zero. On the contrary, when 
the switch of a BI is open, that is in the time interval indicated with 𝑇| in figure 
10.15, the capacitor can’t discharge and there is a buffer that copies the value at the 
output. As a result, when the switch is closed (time interval TG) not only the 
incoming signal is acquired, but also the capacitor can discharge, meaning that the 
previously stored value is reduced by a factor r equal to: 
 

𝑟 = 𝑒1;4 ;5⁄   
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Figure 10.15 control signal of the BI switch (top) and resulting weighting function (bottom) 
 
The DC gain of this filter can be calculated observing that the weighting function 
𝑤9(𝛼) of the BI can be obtained by splitting the weighting function 𝑤\](𝛼) of the 
RC Integrator (RCI) into “slices” of width 𝑇e which are placed over time when the 
signal is present. As a result, the final DC gain is equal to one. 
The autocorrelation functions of BI and RCI are totally different but they feature the 
same value in zero. 
 

𝐾VV9(0) = 𝐾VV\](0) =
1
2𝑅𝐶 =

1
2𝑇{

 

 
Recall that the autocorrelation in zero is a key value to calculate the total amount of 
output noise; assuming a wide-band noise 𝑆H with bandwidth 2𝑓6 and 
autocorrelation time 2𝑇6 we obtain 
 

𝑛8%ggg = 𝑆9 ∙ 𝐾VV9(0) = 𝑆H ∙
1
2𝑇{

= 𝑛,%ggg ∙
𝑇6
𝑇{

 

 
The SNR at the output of the system can be written as the product of the input SNR 
and the improvement factor given by the filter, as follows: 
 

§
𝑆
𝑁©8

= §
𝑆
𝑁©,

∙ À
𝑇{
𝑇Q

 

 
It is worth noting that the SNR enhancement does not depend on the rate of the 
samples; indeed, it is obtained by averaging over a given number of samples and not 
over a given time interval. The average is updated every time a new pulse arrives, 
otherwise the switch is open, and the stored value is kept constant. 
 
The Boxcar Integrator can be seen as the cascade of two filter stages: 
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a) A Gated Integrator featuring the same 𝑇e and 𝑇{ of the BI; it gives a SNR 
improvement factor of: 

 

À
𝑇e
2𝑇6

 

 
b) An Exponential Averaging of the samples with attenuation ratio  
 

𝑟 = 	𝑒#
-3
-: ≅ 1 − 𝑇e 𝑇{Ç  

 
that provides an additional improvement factor equal to: 
 

X)!2
)#2

	≅ 	X %
)#2

= X%-:
-3

 
 

The overall improvement factor can be computed as the product of the two: 

 

§
S
N©}

= §
S
N©,

∗ 	À
𝑇e
2𝑇6

∗ À
2𝑇{
𝑇e

= §
S
N©,

∗ 	À
𝑇{
𝑇6

 

 
 
10.5 Ratemeter Integrator (RI) 
In figure 10.15, the altered scheme of a Boxcar Integrator is reported. In particular, 
a buffer has been inserted between the switch S and the RC network. 
 

 
 

Figure 10.15 Scheme of a Ratemeter Integrator 
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This simple modification radically changes the functionality of the circuit: a new 
exponential averager called Ratemeter Integrator (RI) is obtained.  
First of all, keeping  
 

𝑇\ = 𝑅𝐶 ≫ 𝑇e 
 
results into a DC gain lower than one in this case. Indeed, the low impedance at the 
buffer output allows the capacitor to discharge itself also when the switch is open 
and no signal is integrated, i.e. during the time interval T~. 
The signal replicas, that are acquired during T�, have a constantly decreasing weight 
over time that now is equal to: 
 

𝑟 = 𝑒#(-3!-;) --⁄ = 𝑒#-7 --⁄  
 
In this formula 𝑇J is the sampling period and 𝑇\ is the decay time constant of the 
filter; as we can see 𝑟 now depends on the sample rate. 
 

 
Figure 10.16 weighting function or a Ratemeter Integrator 
 
The weighting function of the RI decreases over time even when the signal is not 
present; as a result, the area of the signal weighting function is for sure less than one, 
and in particular it is proportional to the sampling frequency 
 

𝑓J = 1 𝑇J⁄  
 
The higher is the sampling frequency, the higher is the gain. 
 

𝐺 = & 𝑤\(𝛼)
!"

#"
𝑑𝛼 ≅

𝑇e
𝑇J
∙ & 𝑤\�(𝛼)

!"

#"
𝑑𝛼 ≅

𝑇e
𝑇J
= 𝑓J ∙ 𝑇e 
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In fact, for a given TR the higher the sampling frequency, the higher is the number 
of replicas that are within the non-null weighting interval. Nevertheless, the 
sampling frequency depends on the signal rate, since sampling should occur only 
when the signal is present. 
At this point it should be clear that the ratio between the weights of two samples 
depends now on the sample rate. 
 
The Ratemeter Integrator is used in several applications. For example, consider a 
system providing a signal whose amplitude 𝑥J is known and constant, while the 
repetition rate 𝑓J of the signal is to be measured. In this scenario, an analogue 
Ratemeter Integrator would produce a quasi-DC output proportional to the repetition 
rate allowing the recovery of the information of interest. The described scenario is 
quite common in automotive applications to measure the time-varying rotation 
velocity of a car wheel, for example. In this case, a mark is placed on the wheel to 
generate a signal that depends on the mark itself (constant contribution) and on the 
speed of the wheel; a Ratemeter can be used to integrate the mark signal only when 
it is seen by an external sensor: in this way the output signal is proportional to wheel 
speed, that is the signal of interest.  
As for the BI, we could analyse the Ratemeter Integrator as the cascade of two 
blocks: a Gated Integrator, with same 𝑇e and 𝑇\ of the RI, which enhances the SNR 
by the factor 

À
𝑇e
2𝑇Q

 

 
And an exponential averager of the samples with the attenuation ratio 
 

𝑟 = 𝑒#-7 --⁄ ≅ 1 − 𝑇J 𝑇\⁄  
 
that depends now on the sample rate and enhances the SNR by 
 

À1 + 𝑟
1 − 𝑟 ≅

À 2
1 − 𝑟 = À

2𝑇\
𝑇J

= Á2𝑇\𝑓J 

 
In conclusion, we can see again that the overall SNR depends on the sample rate 𝑓J 
 

§
𝑆
𝑁©8

= §
𝑆
𝑁©,

∙ À
𝑇e
2𝑇Q

∙ À
2𝑇\
𝑇J

= §
𝑆
𝑁©,

∙ À𝑓J𝑇e
𝑇\
𝑇Q

 

 
10.5 Boxcar Integrator versus Ratemeter Integrator 
At the end of this chapter, the Ratemeter and the Boxcar Integrator are compared. 
In figure 10.17 a passive implementation of the two circuits (except for the buffers) 
is shown. 



CHAPTER 10     

 

 122 

 

 
Figure 10.17 Scheme of passive RI and BI 
 
In both filters the switch acts as gate on the input source, but in the RI it doesn’t 
affect the RC integrator. RI does not have any hold state because there is a buffer to 
decouple, so the average is done with constant parameters for a given time. 
On the contrary in the BI the switch acts also on the RC integrator: for this reason, 
the time constant of the integrator switches between 𝜏 = 𝑅𝐶, during the sampling 
phase (when the switch is close) and infinite in the hold phase. 
The sample average is done on a given number of samples, defined by 𝑇{/𝑇e. 
 
If we consider active circuits, as those reported in figure 10.18, we have a DC gain 
𝐺 = 𝑅{ 𝑅=⁄  that can be higher than 1. The active implementation can be useful 
especially for a Ratemeter Integrator that otherwise (passive implementation) 
features a gain much lower than 1. 
 

 
 
Figure 10.18 Scheme of active RI and BI 
 
In the active version, the RI has the switch 𝑆) decoupled from the RC network 
thanks to the virtual ground of the OpAmp; therefore, the average is made with 
constant parameters for a given time defined by 𝜏 = 𝑅{𝐶{. 
Also in the active BI the switch 𝑆) is decoupled from the RC integrator, while the 
second switch 𝑆% changes the time costant from 𝑅{𝐶{, in the sampling phase, to 
infinite in the hold phase, thus providing a BI transfer function.  
  



 

 

    CHAPTER     11 

 

Optimum Filter  
 
The Optimum Filter is a theoretical result: it basically describes the weighting 
function of the filter that ensures the highest possible signal to noise ratio for a 
given signal and noise. The study of the optimum filter strongly depends on signal 
and noise taken into account from time to time. Therefore, the theory is varied and 
complex and it dictates the upper limit of the achievable SNR. 
 
11.1 Introduction 
In the previous chapters we have analyzed many filtering techniques to improve the 
signal to noise ratio. Now, we want to discuss if a maximum SNR exists and how we 
can possibly design a filter to obtain it.   
The general filtering theory answers positively to the first point: a maximum 
theoretical value for the signal to noise ratio always exists and it can be obtained by 
means of linear filters technique. However, we will see that the problem of the design 
of the optimum filter must be tackled and solved separately in each case. In the next 
paragraphs we will not expose deeply the optimum filtering theory, which is 
extremely wide and complex, but we will only determine the optimum filter for one 
particular case: the measure of the amplitude A of a signal s(t) buried in stochastic 
noise n(t). First of all, we will consider the simplest type of signal: the pulse signal; 
we will introduce the optimum filter theory considering the basic case of pulse signals 
accompanied by stationary white noise, and then, that of a general signal in stationary 
white noise. Afterwards, we will extend the discussion to a general signal shape in 
stationary non-white noise. Finally, we will briefly consider the real case of a signal 
coming with a shot noise.   
     
11.2 Optimum Filtering with White Stationary Noise  
Pulse signals are a convenient starting point to expose optimum filter theory: they 
can carry information that is typically contained in the pulse amplitude, not in its 
shape or other parameters (e.g. pulse rise time, duration, etc.). This feature makes it 
quite simple to apply the optimum filtering theory to pulse signals. Moreover, pulse 
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signals are quite common in real applications, making this first part of the discussion 
particularly useful.  
Here are two examples that better illustrate the importance of the pulse amplitude 
detection: 
Automated analysis of biological cells: 
Fluorescence-based analysis tools are often employed in biology: a cell in diluted 
solution, for example, can be labelled with a fluorescent dye that specifically binds 
to a particular component of the cell itself; this property can be exploited to infer the 
quantity of that particular component from the measurement of the optical signal. 
After labelling, the cells are conveyed by a laminar stream in a small duct and they 
cross a laser beam that excite fluorescence: the higher the amount of the labeled 
component, the higher will be the intensity of the luminous signal re-emitted by the 
cell. By measuring and classifying many pulses, the distribution of the component in 
the cell population can be obtained.  
Ionizing radiation spectrometry: 
Radiation detectors generate a current signal with charge proportional to the 
impinging radiation energy. Therefore, measuring the charge of each pulse and 
collecting the histogram of measurements provides the radiation distribution in 
energy, that is the energy spectrum. In this way it is possible to identify radionuclides 
in the source, to measure their quantity, to monitor radiation doses, etc. 
 
The ideal case of pulse signals accompanied by stationary white noise is a good 
approximation for real cases where pulse signals are accompanied by wide-band 
noise, i.e. noise with: 
• Narrow autocorrelation, i.e. width much smaller than the signal duration 
• Wideband uniform spectrum, i.e. upper band limit much higher than that of 

the signal  

To recover the pulse amplitude, a filter has to collect most of the signal and reject 
most of the noise. It’s intuitive that its action should be: 
• in the time domain, some sort of average of the signal and the white noise over 

the time interval occupied by the signal  
• in the frequency domain, the preservation of the low frequency components in the 

range occupied by the signal and a cut-off of the high-frequency range where only 
white noise is present  

This means that it a low-pass filter (LPF) tailored to the signal is a good candidate 
to achieve a high SNR. Here is an example of a Gated Integrator used to filter the 
pulse signal 
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Figure 11. 1 Comparison between pulse signal and Gated Integrator Filter in Time Domain and Frequency 
Domain 

 
We intuitively understood that a low pass filter can provide a high SNR for a pulse 
signal having a spectrum mainly concentrated on a low frequency range accompanied 
by wide-band noise. Nevertheless, we now want to find the optimum filter among the 
various low pass filters that we can select and implement. The issue is to find out the 
optimal weighting function. 
 
11.2.1 Optimum Filter  
The results that we will obtain from now on are valid for a generic signal, but during 
this analysis we maintain the example of the pulse signal for simplicity, keeping in 
mind that the dissertation can be immediately extended to other signal shapes.  
The signal can be expressed pointing out the signal area A and the normalized 
waveform 𝑏(𝑡): 
 

𝑦(𝑡) = 𝐴 ∙ 𝑏(𝑡) 
 
with 

& 𝑏(𝑡) = 1
"

#"
 

 
This expression of the signal means that we are supposed to know the shape of the 
signal, while the amplitude of it is the unknown parameter. In order to find the best 
result obtainable by low pass filtering a pulse signal, we analyze the 𝑆𝑁𝑅 at the 
output of this simple filtering chain: 
Both signal and noise enter the filter, which is fully characterized by the weighting 
function 𝑤<(𝛼) that we are trying to optimize. Then they are acquired at the output 
of the filter at the time instant 𝑡<.  
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Figure 11. 2 Filtering of a signal in white stationary noise 
 
The signal 𝑢(𝑡)	acquired in the measurement is: 
 

𝑢(𝑡<) = & 𝑦(𝛼)𝑤<(𝛼)𝑑𝛼 = 𝐴 ∙
"

#"
& 𝑏(𝛼)𝑤<(𝛼)𝑑𝛼 = 𝐴 ∙ 𝑘HV(0)
"

#"
 

 
The noise 𝑛L%(𝑡<) acquired: 
 

𝑛L%(𝑡<) = & 𝑅88(𝛼)𝑘VV(𝛼) = 𝑆9 ∙ & 𝑤<% (𝛼)𝑑𝛼
"

#"

"

#"
 

 
Therefore, the signal to noise ratio results: 
 

§
𝑆
𝑁©

%

=
𝑢%(𝑡<)
𝑛L%(𝑡<)

=
𝐴%

𝑆9
∙
𝑘HV% (0)
𝑘VV(0)

 

 
The 𝑤<(𝛼) that optimizes 𝑆/𝑁 for a given shape 𝑏(𝛼) is found by exploiting the 
known property of correlation functions based on Schwartz’s inequality:  
 

𝑘HV% (0) ≤ 𝑘HH(0) ∙ 𝑘VV(0) 
 

that is      5<=
* (.)

5==(.)
≤ 𝑘HH(0) 

 
The last inequality lead to the conclusion that: 
 

Max ¯5<=
* (.)

5==(.)
° = 𝑘HH(0) 

 
The highest cross-correlation between the signal and the weighting function is 
obtained when the two have the same shape. Therefore, the maximum is achieved 
with filter weighting function proportional to the signal shape 
 

𝑤<(𝛼) ∝ 𝑏(𝛼) 
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 Which normalized to unit area is: 
 

𝑤<(𝛼) = 𝑏(𝛼) 
 

11.3 Matched Filter 

 
Figure 11. 3 Pulse Signal in white stationary noise, and matched filter which follows the shape of the 
signal 
 
The best result in measurements of the amplitude of signal pulses accompanied by 
stationary white noise, which is represented in figure 11.3, is obtained with weighting 
function equal to the signal shape.  
This conclusion is intuitive: since the noise is uncorrelated, the output noise power is 
the weighted sum of the noise instantaneous power at all times; since this power is 
equal at all times, it is convenient to give higher weight when the signal is higher, 
and a smaller one when the signal decreases; in other words, we need to follow the 
path of the signal in time.  
The filter having weighting function 𝑤<(𝛼) matched to the signal shape 𝑏(𝛼) is 
called matched filter. 
The second stage in figure 11.2, shows that the signal is acquired by the system at a 
certain time 𝑡< , therefore the optimal weighting function must have the same shape 
of the input signal, truncated in 𝑡 = 𝑡<. 
Recalling that constant-parameters linear filters feature the following relation 
between weighting function and 𝛿-response: 
 

𝑤(𝑡, 𝜏) = ℎ(𝑡 − 𝜏) 
 

We can derive that the optimum filter with constant parameters in time is 
characterized by a delta 𝛿-response like: 
 

ℎZ/( = 𝑤(𝑡< − 𝑡)1(𝑡) 
 

The ℎZ/( has the same shape of the input signal, reversed with respect to the time 
axis and shifted by the quantity 𝑡<.  
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11.4 Signal to Noise Ratio of the matched filter 
The optimum 𝑆𝑁𝑅2 provided by the matched filter is: 
 

§
𝑆
𝑁©

%

=
𝐴%

𝑆9
∙ 𝑘HH(0) =

𝐴%

𝑆9
∙ & 𝑏%(𝛼)𝑑𝛼

"

#"
 

 
This expression gives us the highest SNR value that we can obtain in case of a known 
shape signal 𝑏(𝑡) buried in a white noise having power spectrum 𝑆9, and applying 
the optimum filtering technique we have just discussed. It is important to remark that 
the limit of the 𝑆𝑁𝑅 is due to the nature of the specific signal and of the noise, and 
that it cannot be exceeded, not even from a theoretical point of view, or by developing 
alternative theories. In real cases, it is practically impossible to obtain the optimum 
value of the signal to noise ratio given by that formula, because it is obtained filtering 
the signal for an infinite time duration. Nevertheless, knowing the upper SNR 
boundary is a very useful tool and benchmark. In fact, we can use this result to 
determine the performance of a feasible filter.   
Now we will discuss various interpretations of the signal to noise ratio of the 
optimum filter.  
11.4.1 First interpretation: 
We demonstrated that the optimal weighting function is the one proportional to the 
function in time of the signal we want to acquire, since it maximizes the output signal 
to noise ratio.  
Now we write the signal to noise ratio in terms of the optimum filter: 
 

§
𝑆
𝑁©

%

=
𝐴%

𝑆9
∙ 𝑘HH(0) =

𝐴%

𝑆9
∙ & 𝑏%(𝛼)𝑑𝛼

"

#"
 

 

Where 𝑘HH(0) derived from the previous computations, and the integral from the 
known relation between the function in time and its autocorrelation in zero.  
Now let’s reflect on the term of this definition of 𝑆𝑁𝑅.  
The energy 𝐸8	of a signal 𝐴 ∙ 𝑏(𝑡) is: 
 

𝐸8 = 𝐴%& 𝑏%(𝛼)𝑑𝛼 = 𝐴%& 𝐵%(𝑓)𝑑𝑓
"

#"

"

#"
 

 

Where we relied on the Parseval Relation to pass from the time domain to frequency 
in the last equality. So, we see that (𝑆/𝑁)% is simply: 
 

§
𝑆
𝑁©Z/(

%

=
𝐸8
𝑆9
=

𝑠𝑖𝑔𝑛𝑎𝑙	𝑒𝑛𝑒𝑟𝑔𝑦	
𝑛𝑜𝑖𝑠𝑒	𝑝𝑜𝑤𝑒𝑟	𝑑𝑒𝑛𝑠𝑖𝑡𝑦	(𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙) 
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The energy of the normalized signal 𝑏(𝑡) 
 

𝐸H = & 𝑏%(𝛼)
"

#"
𝑑𝑎 = & 𝐵%(𝑓)𝑑𝑓

"

#"
 

Hence 
𝐸8 = 𝐴% ∙ 𝐸H 

 
We rewrite the signal to noise ratio by setting in evidence the amplitude of the input 
signal: 

§
𝑆
𝑁©Z/(

%

= 𝐴% ∙
𝐸H
𝑆9

 

 
The minimum measurable amplitude 𝐴<=6 is defined as the amplitude that gives  
 

§
𝑆
𝑁©

%

= 1 

Therefore: 

𝐴<=6 =
Á𝑆9
Á𝐸H

=
Á𝑆9

X∫ 𝑏%(𝛼)𝑑𝛼"
#"

=
Á𝑆9

X∫ 𝐵%(𝑓)𝑑𝑓"
#"

 

 
According to this expression, the minimum detectable signal is given by the ratio of 
the spectral density of the noise and the energy of the normalized signal.  
 
11.4.2 Second Interpretation:  
A second interpretation of (𝑆/𝑁)Z/(	is found by taking in account that the input noise 
is only approximately white: in fact, it has finite power 𝑛8%  and finite width 2𝑇6 of 
the autocorrelation. 

 
Figure 11. 4 Approximation of a real wide band noise 
 

𝑆9 = 𝑛8% ∙ 2𝑇6 
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We can thus rewrite the expression we found in the first interpretation of the signal 
to noise ratio as: 

§
𝑆
𝑁©Z/(

%

=
𝐸8
𝑆9
=
𝐸8/2𝑇6
𝑛8%

 

 
Which highlights that the energy of the signal is concentrated in the interval 2𝑇6.  
 
11.3 Optimum Filter of Signals with any Stationary Noise 
Optimum filters to measure the amplitude of pulse signals accompanied by any 
stationary noise can be obtained by extending the result achieved for white noise.  
Before starting the discussion on how to extend the optimum filter theory to any 
stationary noise, here are some useful considerations to keep in mind: 
1. The operations carried out by linear filters with constant parameters are always 

reversible  
2. In principle, it is always possible to convert any given generic noise into white 

noise using a whitening filter with constant parameters, characterized by a 
particular transfer function 

|𝐻H(𝑓)| ∝ 1/𝑆,(𝑓) 
 

3. It is particularly easy to evaluate the effects of a filter on the white noise  
 
These considerations lead us to simplify the problem of the design of the optimum 
filter dividing it in two phases, corresponding to two cascaded stages. 
The first stage is a constant parameter filter which aims at transforming the stationary 
input noise (characterized by the autocorrelation function 𝑅88(𝜏)), into a white noise, 
characterized by the well-known behavior of the autocorrelation in time and the 
frequency spectrum (see chapter 3 about white noise). 
The second stage is a linear filter characterized by the weighting function 𝑤<(	) 
which has the role of optimizing the (𝑆/𝑁).  The reversibility is an essential property: 
under this hypothesis nothing is lost in the transformation and whatever is done by 
the whitening filter can be reversed by the following filters. We can then proceed 
towards the optimum filter design, since we know what to do in the situation at the 
output of the whitening filter: we have pulse signal (referring to the pulse signal 
example) accompanied by the white stationary noise and we know that a matched 
filter performs the optimum filtering.  
To sum up, the optimum filter in the case of any stationary noise will consist of:  
 

OPTIMUM FILTER= WHITENING FILTER + MATCHED FILTER 
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Figure 11. 5 Filtering of a signal in any stationary noise 
 
In the figure 11.5 the cascaded structure we are going to study.  
Some observations about this cascaded structure: 
• The whitening filter modifies the waveform of the signal; hence the following 

filter is matched to this modified signal, not to the original input signal.  
• The subdivision of the optimum filter in whitening filter and matched filter is a 

useful theoretical approach to analyze the problem and find the overall optimal 
weighting, but it is not the necessary structure of the optimum filter. This means 
that in principle, we can find the optimal weighting function by combining these 
two stages, then we can implement this function by employing any kind of linear 
filter. This degree of freedom is precious because many times it is quite difficult 
to implement the noise-whitening filter. 

• For a given noise with spectrum Sx(f) the whitening filter is a constant-parameter 
linear filter that has transfer function  Hb(f)  such that  |𝐻H(𝑓)|% ∝ 1 𝑆,(𝑓)⁄                                     
(in time domain: filter autocorrelation function kbb(τ) such that the convolution 
with the noise autocorrelation Rxx(τ) produces a δ-like autocorrelation 𝑅88(𝜏) ∝
 𝛿(𝜏) )  

• The action of the whitening filter is more evident in cases where the actual noise 
results from white noise filtered by some circuit. For example, consider the 
Johnson noise of a resistor passed through an amplifier with upper band-limit set 
by a simple pole at low frequency. The whitening filter simply reverts the filtering 
by the amplifier with a transformation that cancels the low-pass pole. 
 

11.4 Optimum Filter with Shot Noise 
To investigate the optimum filter with shot noise, we should focus on the real cases 
in which shot current is dominant over all other noise contributions.  
To illustrate that situation, the output of photomultiplier tube (PMT) can be 
considered. 
 We will describe in detail this kind of photodetectors in the second part of this book. 
At this moment we can consider this sensor like an amplifier with extremely high 
internal gain. Since the amplification rate of PMT is really high, the noise of the 
following stage can be neglected. 
 



CHAPTER 11     

 

 132 

The current of the PMT consists of 2 different components: 
• a constant (DC) current ID, due to the background light that reaches the 

photocathode plus the dark current 
• a current signal IS(t) due to the optical signal detected 

 
Due to the very short autocorrelation time, the PMT shot noise can be considered as 
white noise with 2 defined components: 

• a stationary noise with constant intensity, i.e. with autocorrelation 

 
• a non-stationary noise with intensity varying in time, i.e. with 

autocorrelation 

 
 

The stationary component has (bilateral) spectral density      
 

𝑆r = 𝑄	𝐼r 
 
The non-stationary component has (bilateral) spectral density 

 
𝑆J(𝑎) = 𝑄	𝐼J(𝑎) 

If we sum up these 2 components, we obtain: 

 
𝑆9(𝑎) = 𝑆r +	𝑆J(𝑎) = 𝑄 ∗ [	𝐼r + 𝐼J(𝑎)] 

 
 

Let’s take a look at the weighting function in case of non stationary white nose. 
 

 
Figure 11. 7 Acquisition chain for pulse signal and non-stationary noise 
 

( ) ( )iD DR Sτ δ τ≈

( ) ( ) ( ),iS SR Sα τ α δ τ≈
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So, we have: 
• Narrow autocorrelation, with width much smaller than the signal duration, 

therefore well approximated by a δ-function 
• Intensity variable in time, i.e. area SB of the δ-function variable with time  

 

 
 
The signal and noise acquired in the measurement are 

 
 
 
 

Therefore 

 
 

In this case the denominator is not kww(0)  because the integral includes also SB(α).  
However, SB(α) is among the data, i.e. it is known and not modifiable. We can thus 
define a weighting function wm,a(α) matched to the shape of the signal and adapted 
to the variation of noise intensity, which has a known relation with the true weighting 
function wm(α) 

 

 
 

and write 

 
 

We can rewrite the numerator integral to introduce the adapted weighting function 
 
 
 
 
and define an adjusted signal shape ba(α) adapted to the noise variation 
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We can thus write the numerator as 
 
 
 
and the S/N as 
 
 
 
and we can exploit again the property 
 

 
 

 
NB: wm,a and ba are not the real weighting and signal, they are only  a mathematical 
trick! 
The maximum value is reached by taking 
 
 
 
Given the definitions of wm,a(α)  and  ba(α) , this leads to a true weighting function 
 

 
 

This is an adapted matched filter, that is adapted to the non-stationary noise. The 
result is quite intuitive: since the noise power varies in time, it is convenient on one 
hand to give higher weight when the signal is higher, on the other hand to give lower 
weight where the noise is higher. The optimum S/N thus obtained is 
 

 
 
 
By comparing to the previous result with stationary noise 
 

 

( ) ( )
( )m

B

b
w

S
α

α
α

∝

( )
( )

( ) ( )
( )

2 2 2
,2 2 2

,
, ,

0
max 0

0
bw a

bb a
opt ns ww a B

k bS
A A k A d

N k S
α

α
α

∞

−∞

⎡ ⎤⎛ ⎞ = ⋅ = ⋅ = ⋅⎢ ⎥⎜ ⎟
⎝ ⎠ ⎢ ⎥⎣ ⎦

∫

( )
2 2

2

( )opt B

S A signal energy
b d

N S noise power density bilateral
α α

∞

−∞

⎛ ⎞ = ⋅ =⎜ ⎟
⎝ ⎠ ∫

( )
( )

2 2
,2

,

0
0

bw a

ww a

kS A
N k

æ ö = ×ç ÷
è ø

( ) ( ) ( ) ( ), , 0m a m a bw au t A b w d A ka a a
¥

-¥
= × = ×ò

( )
( ) ( )

2
,

,
,

0
0

0
bw a

bb a
ww a

k
k

k
£

( ) ( ),m a aw ba a=



Optimum filter 1 

 

 135 

 
we note that in the non-stationary case 
 

 
 

• the integrand is the energy of the element of the signal in the interval dα at time α, 
divided by the noise power density SB(α ) at that time;  

• that is, the integrand is the elementary S/N for the optimized measurement of a 
signal element at time α. 

• The total optimized (S/N)opt,ns  can be considered as a sum of these elementary 
contributions. 
We can highlight that in real cases the input noise can be approximately white,  
with autocorrelation with finite width 2Tn (anyway much shorter than the signal 
duration) and finite noise power 𝑛8%(𝛼)gggggggg  that varies with time 
We can thus write 
 

 
 
which shows that the (S/N)opt,ns is the sum of all the (S/N) of elementary measurements 
carried out by sampling the signal at all time instants.  
 
As shown, with non-stationary white noise the optimal weighting depends not only 
on the signal waveform, but also on the variation in time of the noise intensity as 
follows 

 
 
The shape of the weighting function thus changes as the relative size of the pulse 
current and background current change. 
The optimal weighting in this case is 
 

 
 

( )
( )

( )
( )

2 2 2 2
2

,opt ns B B

b A b dS
A d

N S S
α α α

α
α α

∞ ∞

−∞ −∞

⎛ ⎞ = ⋅ =⎜ ⎟
⎝ ⎠ ∫ ∫

( )
( )

( )
( )

2 2 2 2
2

2
, 2opt ns B ny

b A bS d
A d

N S Tn

α α α
α

α α

∞ ∞

−∞ −∞

⎛ ⎞ = ⋅ =⎜ ⎟
⎝ ⎠ ∫ ∫

( ) ( )
( )

( )
( )

( )
( )

S S
m

B D S D S

b I I
w

S S S I I
α α α

α
α α α

∝ ∝ ∝
+ +

( ) ( )
( )

( )
( )

( )
( )

S S
m

B D S D S

b I I
w

S S S I I
α α α

α
α α α

∝ ∝ ∝
+ +



CHAPTER 11     

 

 136 

If the pulse current is much smaller than the background, i.e. with   𝐼J << 𝐼r 
the noise is almost stationary and the weighting tracks the signal shape, it is the 
matched filter 

 
If the pulse current is much greater than the background. i.e. with  𝐼J >> 𝐼r 
the optimal weight is practically constant over the signal extent. The optimal 
processing is to integrate over the interval occupied by the signal, i.e. simply to 
collect all the pulse charge; it can be simply implemented by a GI 
 

 
 

If pulse and background are comparable, the optimal weighting function has an 
intermediate shape between the two cases above 
 

 
Figure 11. 8 Current pulse and related optimal weighting function in case of dominant background noise 
(left) or dominant pulse-related nois 
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    CHAPTER     12  
Optimum filter 2 
 
In this chapter we apply the optimum filter theory to signals coming from high-
impedance sensors. We will study the whitening filter and the optimum filter. 
Finally, we will make some practical considerations about the approximation of 
this solutions in the real world. 
 
 

12.1 High Impedance Sensor and Low-Noise Preamplifiers 
Let us consider sensors that are seen by the circuits connected to their terminals as 
generators of current signals with high internal impedance (typically a small 
capacitance CS with a high resistance RS in parallel). 
Typical examples are: p-i-n junction photodiodes and other photodetectors (CCDs, 
vacuum tube, photodiodes, etc.), piezoelectric Force Sensors in quartz or other 
piezoelectric ceramic materials. 
These sensors typically have internal noise sources (e.g. shot current noise of a 
reverse-biased junction current) modeled by a current noise generator in parallel to 
the signal generator. The equivalent circuit model is sketched in figure 12.1. 
 

 
 
Figure 12.1  equivalent circuit model of an high impedance sensor  
 
The amplifier can be modeled as shown in figure 12.2, where the RiA is the true 
physical resistance between the input terminals (NOT the dynamic input resistance 
modified by the feedback in the amplifier; e.g. not the low dynamic resistance of the 
virtual ground of an operational amplifier). 
Besides shot noise of bias currents, the SiA includes Johnson resistor noise of RiA 
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Figure 12.2 equivalent model of the amplifier connected to the sensor 
 

𝑆)2 =
4𝑘𝑇
𝑅)<

 

The current noise directly faces the sensor current signal IS. If RiA is small the SiR is 
overwhelming (e.g. with RiA=50 Ω it is √SiR ≈ 18pA/√Hz) while other contributions 
to √SiA are much lower (about 1pA/√Hz or lower). 
As a result, low-noise operation of high-impedance sensors requires a preamplifier 
with high input resistance RiA. 
 
So, the overall equivalent circuit of high impedance sensor and Preamplifier 
(approximation valid for very high sensor resistance Rs →ꝏ) could be: 
 

 
 
Figure 12.3 overall equivalent circuit of high impedance sensor and Preamplifier 
 
The sensor generates a current pulse and we want to measure total charge Q; the 
amplitude of the signal step is Q/CL while, from the noise point of view, we have: 
  
                  CL = CS + CiA    total capacitance load 
                  Sv = SvA              voltage noise generator (wideband noise spectrum) 
                  Si = SiD + SiA              current noise generator (wideband noise spectrum)  
 
The voltage noise spectrum Sn has two components, it is NOT white at the 
preamplifier output 
	

                                            𝑆6(𝜔) = 	𝑆E +	
J>

�*]?
* 

 



Optimum filter 2 

 

 139 

The noise power spectrum sketched in figure 12.4 clearly shows the superposition of 
these two components: Sv is constant along all the frequency range, while the current 
component filtered by the load capacitance introduces a divergent trend towards low 
frequencies. 

 
Figure 12.4 total noise power spectrum 
 
The frequency where the two noise components have equal magnitude is called Noise 
corner angular frequency ωnc., and it is derived by equating the two noise 
components. 
 

𝑆E 	= 	
J>

�*]?
*                            𝜔6�		R 	

cJ>
]?cJ@

 

 
We define Tnc = 1/ ωnc as noise corner frequency time constant: 

	𝑇6� =
1
𝜔6�

=
Á𝑆E
Á𝑆=

𝐶� 

Tnc and ωnc are fundamental parameters of the optimum filter: we will see that Tnc 
rules the duration of the filter weighting and the ωnc the filter bandwidth. 
We can define the Noise Corner resistance as:    

𝑅*0 =	K𝑆= K𝑆)L  

so that Tnc = Rnc * CL 

Rnc typically ranges from tens to hundreds of kΩ, while Tnc ranges from a few 
nanoseconds to some hundreds of nanoseconds.  
 
12.3 Noise whitening filter  
All the considerations made in the previous chapter about optimum filter are valid 
for white noise only. When noise power spectrum is somehow colored, we saw that 
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need a whitening filter to make the output noise to be white. So, starting from the 
spectral density given by the sensor and the preamplifier: 
  

𝑆𝑛(𝜔) = 	𝑆𝑣 M1 +	
𝑆𝑖

𝜔2𝑆𝑣𝐶𝐿2
N = 	𝑆𝑣 M1 +	

1
𝜔2𝑇𝑛𝑐2

N = 		 𝑆𝑣
1 + 𝜔2𝑇𝑛𝑐2

𝜔2𝑇𝑛𝑐2
 

 
We see that the noise spectrum has a pole at ωp = 0 and a zero at ωz = ωnc = 1/ Tnc 

 
 
 
 

 
 
 
 
 
 

Figure 12.5 bode diagram of the total noise power spectrum (left) and whitening filter (right) 
  
To make the output noise to be white, the noise whitening filter Hnw must  

• Cancel the pole with a zero at ω = 0 
• Cancel the zero with a pole at ωz = ωnc = 1/Tnc 

 
We can write the whitening filter transfer function (squared): 
 

|𝐻6V(𝜔)|% =	
𝜔%𝑇6�%

1 + 𝜔%𝑇6�%
 

It is a simple high-pass filter. 
 
A simple high-pass filter has a time constant Thp = Tnc =Rw * Cw that we can set to 
be equal to the noise corner frequency Tnc.  

 

𝐻6V(𝜔) = 	
𝑗𝜔𝑅V𝐶V

1 + 𝑗𝜔𝑅V𝐶V
=	

𝑠𝑅V𝐶V
1 + 𝑠𝑅V𝐶V

 

 
Appling the filter of figure 12.5, the output noise power spectrum is now equal to 
Sv, which is constant along the whole spectrum.  
The signal pulse Is is filtered by both CL and Hnw(ω) so the overall effect is that of a 
low pass filtering with time-constant Tnc. The voltage step ys(t) is turned into a short 
exponential decaying pulse.  
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Figure 12.8   Whitening filter effect on the signa 

 
12.4 Matched Filter 
The matched filter must have the same shape of the signal after the whitening process. 
The final optimum filter with colored noise will be the cascade of whitening and 
matched filters. 

 
Figure 12.9   Explicit representation of the optimum filter split into the two stages 
 
As we said before, the signal coming out from the noise whitening filter is: 
 

𝑧O(𝑡) =
𝑄
𝐶�
∙ 1(𝑡) ∙ exp	(−

𝑡
𝑇6�

) 

Therefore, the matched filter must have the same shape: 
 

𝑤� = 	1(𝑡) ∙
1
𝑇6�

exp	(−
𝑡
𝑇6�

) 

As a result: 
 

𝜂𝑜
2 = M

𝑆
𝑁
N
𝑜𝑝𝑡

2

= 	
O∫ 𝑧𝑠(𝛼)𝑤𝑚(𝛼)	𝑑𝛼

+∞
−∞ Q

2

𝑆𝑣 ∙ 	∫ 𝑤𝑚
2∞

−∞
(𝛼)𝑑𝛼

= 	
𝑄2

𝐶𝐿2
	
𝑇𝑛𝑐2

𝑆𝑣
	: 𝑤𝑚

2
∞

−∞
(𝛼)𝑑𝛼 =

𝑄2

𝐶𝐿2
1
2
	
𝑇𝑛𝑐	

𝑆𝑣
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At the output of the optimum filter (i.e. of the matched filter) we have: 
 
Signal: 
	

𝑆Z =	& 𝑧O
"

.
(𝛼)𝑤<(𝛼)𝑑𝛼 = 	

𝑄
𝐶�

1
𝑇6�

& exp §−
2𝛼
𝑇6�

©𝑑𝛼
"

.
=	
1
2
𝑄
𝐶�

 

Noise: 
 

X𝑛Z%ggg = 	Á𝑆E ∙ Á𝑘VV(0) = 	Á𝑆E
1
𝑇6�

À& exp §−
2𝛼
𝑇6�

©𝑑𝛼
"

.
= À

𝑆E
2𝑇6�

 

So, the S/N is: 

𝜂Z =
𝑠Z

X𝑛Z%ggg
= 	
1
2
𝑄
𝐶�
	À
2𝑇6�
𝑆E

 

 
As an example, we can apply these results to measure the signal charge Q, so we can 
consider the noise in terms of equivalent noise charge q2no  

 

𝑞6Z% =	 %]?
*J@
-AB

      

 
We get another expression of S/N: 
 

𝜂Z% =	𝑄%
𝑇6�
2𝐶�%𝑆E

=	
𝑄%

𝑞6Z%
 

 
Recalling that Tnc = CL * Rnc = CL * (√Sv /√Si) we can express q2no in terms of the main 
parameters of the sensor and preamplifier: 
 

𝑞6Z% = 2𝐶� ∙ 	Á𝑆E ∙ Á𝑆= 

q2no is the charge pulse for which S/N = 1. It represents the minimum measurable 
pulse Qmin and the minimum difference between two distinguishable pulses.	
We can express q2no as the minimum number of electron charges (NB electron charge 
e = 1,6 * 10-19 C) readable at the output of the system. 

X𝑁�Z%ggggg = 	
Á𝑞6Z%

𝑒 = 	
X2𝐶�Á𝑆�Á𝑆=

𝑒 = 278 ∙ X𝐶�[𝑝𝐹] ∙ 𝑆E
)
%[𝑛𝑉/√𝐻𝑧] ∙ 𝑆=

)
%	[𝑝𝐴/√𝐻𝑧] 
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It is instructive to evaluate and compare typical values of the optimized noise charge 
in typical cases of, for example, PIN photodiodes coupled to high-impedance 
preamplifiers.  

a) PIN with wide sensitive area (1mm diameter) and discrete-component 
preamplifier with moderately low-noise. Fairly high capacitance of PIN & 
connections (CL about 10pF) and not-so-low preamp noise (typical 
20nV/√𝐻𝑧) set a fairly high limit 

electrons 

b) PIN with reduced sensitive area (about 100um diameter) and discrete-
component preamplifier with low-noise. Reduced capacitance of PIN & 
connections (CL about 1pF)  and reduced preamp noise (typical 10nV/√𝐻𝑧) 
bring a strong reduction 

electrons 

c) PIN with a small sensitive area (less than 20um diameter) integrated with a 
very low-noise preamplifier. Capacitance minimization by monolithic 
integration (CL about 0,1 pF) and very low preamp noise (2nV/√𝐻𝑧) bring 
further progress 

electrons 

12.5 Optimum Filtering with Finite Readout Time 
The exponential weighting function w(t) of the matched filter reaches zero only at t 
à ∞, so that the measurement of the pulse in principle is available with infinite delay 
after the pulse onset. However, most of the weight of the matched filter is over a 
finite time interval of a few time constants Tnc. So we are interested in evaluating the 
result of a practical approximation of the matched filter.  
We saw in the previous paragraphs how the whitening filter is simple and easy to 
implement. So, to compute the complete optimum filter, it is sufficient to find out 
how to approximate the matched filter. 
The previous results, both in the frequency and time domain, pointed out that the 
overall effect of the acquisition chain (including the whitening filter) on the original 
signal is the one of a low pass filter; indeed, the original delta-like pulse is translated 
into an exponential pulse as reported in figure 12.8. 
Therefore, a simple approximation of the matched filter could be a simple RC 
integrator. However, it is extremely important to point out that this is only an 
approximation, let’s see it in detail. 

2 1800eoN ≈

2 120eoN ≈

2 10eoN ≈



CHAPTER 12     

 

 144 

With RC=Tnc the delta response h(t) of the low pass filter seems identical to the 
weighting function Wm(t) of the matched filter. However, the RC weighting 
function Wf(t) is reversed compared to the shape as Wm(t) of the matched filter. 
 
 
 
 
 
 
 
 
 

 
Figure 12.10   δ-response and weighting function of RC single pole filter 
 
From the noise point of view the filtering is the same of the matched filter, since it is 
independent from the weighting function inversion; the output is white noise with 
band limit set by a simple pole with time constant Tf.  

Signal filtering instead is different from the matched filter, since it is affected by the 
time-inversion.  

 
Figure 12.11   RC single pole filter features 
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The shape at the output of the matched filter can be seen as the overall weighting 
function of the optimum filter (whitening + matched). The δ response and w-function 
are shown in the next figure: 

 

Figure 12.12   δ-response and weighting function of the overall optimum filter 
 
The RC output signal waveform is: 
 

𝑢𝐹(𝑡) = 	
𝑄
𝐶𝐿

𝑡
𝑇𝑛𝑐

exp	(−
𝑡
𝑇𝑛𝑐

) 

 
Which peaks at time t = Tnc with value:  
 

𝑠@ = 𝑢@(𝑇*0) = 	
1
𝑒
𝑄
𝐶A
	 

The total noise power collected by the filter is:   	

T𝑛@7DDD = K𝑆= ∙ K𝑘BB(0) = W
𝑆=
2𝑇*0

 

Which gives a S/N: 
 

𝜂@ =
𝑠@

T𝑛@7DDD
=
1
𝑒
𝑄
𝐶A
W
2𝑇*0
𝑆=

 

Comparing the RC approximation with the ideal optimum filter system we see that 
maximum signal amplitude has been reduced by a factor: 
 

𝑠@ =
2
𝑒
𝑠& ≈ 0,736 ∙ 𝑠& 
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As said before, the noise collected by the RC is the same of the optimum: 

T𝑛@7DDD = T𝑛47DDD 

As a result, we have a S/N reduction of the factor 7
C
: 

𝜂@ =	
2
𝑒
𝜂&	 ≈ 0,736 ∙ 𝜂&	 

The performance of the filter system with RC approximation of matched filter is 
about 27% worse than the absolute optimum. The main causes of this reduction are 
related to the readout time tr. The finite readout time tr = Tnc of the RC approximation 
of the matched filter, while the ideal optimum has infinite readout time.  

We can compute a more objective assessment of the RC approximation by taking as 
reference the optimum filter with the constraint of finite readout time tr = Tnc. 
 
The optimum filter with the constraint of finite readout time tr gives: 
 

𝜂𝑅𝑜(𝑡𝑅) = 𝜂Z	 ∙ 	X1 − exp	(−
%(-
-AB
) 

 
In the case with tr = Tnc it is 
 

𝜂𝑅𝑜(𝑇𝑛𝑐) = 𝜂𝑜 ∙ 0,929 
 
So, in conclusion: 

𝜂𝐹 = 	
2
𝑒
𝜂𝑜 ≈ 0,736 ∙ 𝜂𝑜 = 0,79 ∙ 𝜂𝑅𝑜(𝑇𝑛𝑐) 

 
The performance of the RC approximation is about 21% worse than the optimum 
filter with the constraint of finite readout time tr=Tnc. This performance is remarkably 
lower than the optimum, but the RC is just a crude approximation: better results can 
be obtained with more sophisticated filter design. 
 
12.6 Noise whitening filter: case with finite load resistance 
Now we will analyze the behavior of a noise whitening filter without approximating 
as infinite the input load resistance. The main difference with the approximated case 
is the signal shape at the sensor output. In the RL à ∞ case we treated it as an infinite 
step, but now we are going to take in account a slowly exponential decaying pulse, 
whose time constant is TL = RLCL. The equivalent circuit of a high-impedance Sensor 
and preamplifier configuration with finite load resistance RL is shown in figure 12.13. 
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Figure 12.13   Equivalent circuit of a real high impedance Sensor and Preamp 
 

Due to the introduction of the finite value RL, we have an additional pole at low 
frequency. The noise power spectrum doesn’t diverge anymore at low frequency 
since the load resistance sets a finite limit to the DC gain 

Figure 12.14   Sensor load network shaping of noise power spectral density 
 
Let’s analyze signal and noise at the preamplifier output. 
The output signal is an exponential pulse with long time constant TL = RLCL 

 

𝑦(𝑡) = 	
𝑄
𝐶�
∙ 1(𝑡) ∙ exp	(−

𝑡
𝑇�
) 

 
The voltage noise spectrum Sn has two components and it is NOT white: 

 

𝑆𝑛(𝜔) = 	𝑆𝑣 + 𝑆𝑖
𝑅𝐿2

1 + 𝜔2𝑅𝐿2𝐶𝐿2
= 	𝑆𝑣 + 𝑆𝑖

𝑅𝐿2

1 + 𝜔2𝑇𝐿2
 

 

𝑆6 =	𝑆E ¼1 +
1
𝑇6�%

𝑇�%

1 + 𝜔%𝑇�%
½ = 𝑆E ∙

𝑇6�% + 𝑇�%

𝑇6�%
∙
1 + 𝜔%𝑇6�%

𝑇�%
𝑇6�% + 𝑇�%

1 + 𝜔%𝑇�%
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In which we can identify the pole frequency : 
 

𝜔𝐿2 = 1/𝑇𝐿2 
 
and the zero frequency:   

	𝜔D7 =
1
𝑇D7

=
1
𝑇*07

(1 +
𝑇*07

𝑇A7
) 

 
With high load resistance RL (namely with RL/Rnc = TL/Tnc > 10) the zero is about 
the same as with infinite load resistance: 
 

𝜔D7 ≈
1
𝑇*07

= 𝜔*07  

Now we can design a new whitening filter that takes into account the real shape of 
the noise. This filter must cancel out the pole (with a zero at the same angular 
frequency ωL), and the zero (with a pole at ωz). The Bode diagram of this whitening 
filter is that of a semi high-pass filter, with finite DC attenuation. 

 

𝐻*8(𝜔) = 	
𝑇D
𝑇A
1 + 𝑗𝜔𝑇A
1 + 𝑗𝜔𝑇D

≈
𝑇*0
𝑇A

1 + 𝑗𝜔𝑇A
1 + 𝑗𝜔𝑇*0

 

 

 
Figure 12.15   Transfer function and Bode diagram of a real case whitening filter 
 
We can then study this implementation of a modified  high-pass filter 
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Figure 12.16   Schematic of the quasi high-pass filter  
 
Whose transfer function is: 

𝐻6V(𝑠) = 	
𝑇�
𝑇�
1 + 𝑠𝑇�
1 + 𝑠𝑇�

																																															with				
𝑅]𝑅V
𝑅] + 𝑅V

𝐶V = 𝑇� ≈ 𝑇6� 

As a conclusion, the effect of this whitening filter is to turn the noise power spectrum 
white and to shape the signal into a short exponential pulse with time-constant Tnc.  
Figure 12.17 shows the overall pulse response of the system stage by stage.  
 
 

 
Figure 12.17   Summary: high impedance sensor and preamp with whitening filter. 
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    CHAPTER     13 

Filtering: 1/f Noise and 
High-Pass Filter 1 
 

Understanding 1/f noise is crucial in a wide variety of applications dealing with 
low amplitude and low frequency signal (for example in bioelectronics). This 
chapter aims at providing an insight on 1/f noise and some techniques to reduce its 
contribution to the total output noise are presented. 
 
13.1 Introduction 
1/f Noise was firstly reported in 1925 as flicker noise in electronic vacuum tubes, 
and it was later observed in all electronic devices. It is characterized by random 
fluctuations with power spectral density 𝑆(𝑓) ∝ )

|'|
  and with different intensity in 

different devices. It has also been observed in many cases outside electronics: for 
example, in biology (cell membrane potential), in oceanography (ocean current 
flux), in astronomy (gravitational-wave), etc.  Random fluctuations that characterize 
1/f noise arise from physical processes that generate random superposition of 
elementary pulses with random pulse duration ranging from very short to very long. 
      

 
Figure 13.1 difference between 1/f and white noise in time and frequency domain. 
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The basic distinction between 1/f and white noise, for our purpose, is the time span 
of interdependence between the samples; for the 1/f noise, the samples are strongly 
correlated even at long time distance, while white noise samples are uncorrelated 
even at short time distance. 
 
13.2 1/f Noise 
The real observed power density at low frequency is often not exactly  

𝑆(𝑓) ∝
1
|𝑓| 

but rather 

𝑆(𝑓) ∝
1
|𝑓|5 

with k close to unity 0.8<k<1.2.  
Nevertheless, 1/f spectrum is a good approximation and we will use it in this text.  
1/f noise is typically specified in relative terms referred to the white noise 𝑆H of the 
same system; in particular, the corner frequency 𝑓� at which 𝑆' = 𝑆H is typically 
provided, and since the spectral density is  
 

𝑆'(𝑓) =
𝑃
𝑓 

we find out that 
𝑃 = 𝑆9 ∙ 𝑓� 

 
As we can see from this formula, increasing the frequency 𝑓� will determine a 
stronger role of the 1/f noise in the total noise computation, and for a given 𝑆9 the 
higher the corner frequency, the higher the intensity P. 
 
 
 
 
     
 
 
 
 
                                          
 
Figure 13.2 1/f and white noise spectrum: bode diagram on the left and linear diagram on the right. 
 
Typical values for low-noise voltage amplifiers are: 
 

𝑆9 ≈ 10#)�𝑉%/𝐻𝑧 
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10𝐻𝑧 < 𝑓] < 10𝑘𝐻𝑧 

That is 
3.2	𝑛𝑉 < √𝑃 < 100𝑛𝑉 

 
The ideal 1/f noise spectrum runs from f=0 to 𝑓 → ∞ and so ideal 1/f noise has a 
divergent power 𝑛'%ggg → ∞	both considering the low and high frequencies. 
 

𝑛'%ggg = &
𝑃
𝑓

"

.
𝑑𝑓 → ∞ 

 
However, we will see that real 1/f noise spectrum has span limited at both ends and 
is not divergent due to physical limitations.  
If there is wide spacing between these high-frequency and low-frequency 
limitations, the formula of the noise power can be approximated by sharp cutoff at 
low frequency 𝑓= and high frequency 𝑓O and the noise power can be evaluated as  
 

𝑛'%ggg ≈ &
𝑃
𝑓

'1

'>
𝑑𝑓 = 𝑃𝑙𝑛 §

𝑓O
𝑓=
© = 𝑆H𝑓�𝑙𝑛 §

𝑓O
𝑓=
© 

 
This is correct only if 𝑓O ≫ 𝑓=, otherwise the approximation will lead to an incorrect 
value of the noise power. (the values of  𝑓= and 𝑓O are the ones given by the filters). 
 
From the above equation we can derive valuable information such as: 
 

• 𝑛'%ggg depends on the ratio �C
�D

 and not on the absolute value 𝑓= and 𝑓O. 

• 𝑛'%ggg	is	divergent for 𝑓O → ∞ (like white noise). To reduce the noise power 
it is necessary to have a limit at high frequency. Such a limit always exists 
in real cases. 

• 𝑛'%ggg is divergent for 𝑓= → 0. To reduce the noise power, it is necessary to 
have a limit at low frequency. We will see that such a limit always exists 
in real cases. 
 

These considerations can also be inferred from both the linear and the bode diagram 
of Figure 13.2 (remembering that for the bode plot f=0 is at -∞)  
 
Another important consideration that we have to keep in mind is that the noise 
power 𝑛'%ggg is slowly divergent for 𝑓= → 0 or 𝑓O → ∞ because of the logarithmic 
dependence. This will be a useful information to remember trying to optimize the 
overall noise of a circuit (considering both white and 1/f noise). The two noise 
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contributions, white and 1/f, have different dependency on the frequency limitations 
imposed by the filters.  
 
Let’s consider an example to better evaluate this dependence for the 1/f. We can 
compare two different situations starting from 1/f noise with √𝑃 = Á𝑆9𝑓� =
100𝑛𝑉 
 

I. Filtered with 𝑓= = 1𝐾𝐻𝑧 and 𝑓O = 10𝐾𝐻𝑧 ('1
'>

=10) 

X𝑛',q%ggggg = √2.3Á𝑆9𝑓� = 151𝑛𝑉 

 
II. Filtered with 𝑓= = 1𝐻𝑧 and 𝑓O = 10𝑀𝐻𝑧 ('1

'>
= 10� i.e. 𝑥10�higher)  

X𝑛',qq%ggggg = √7 ∗ 2.3Á𝑆9𝑓� = 401𝑛𝑉 (just x2.7 higher) 

 
This example denotes the features of a logarithmic dependence and it shows that it 
is not necessary to know very precisely 𝑓= 	and 𝑓O to make a good assessment of 𝑛'%ggg. 
For example, considering a high frequency pole 𝑓O set by a low pass filter RC we 
have: 
 

I. Filtered with 𝑓= = 1𝐾𝐻𝑧 and 𝑓O = 10𝐾𝐻𝑧 ('1
'>

=10) 

X𝑛',q%ggggg = √2.3Á𝑆9𝑓� = 151𝑛𝑉 

 
II. With bandlimit 𝑓O corrected to 𝑓O6 =

&
%
𝑓O = 15.7𝐾𝐻𝑧 (50% higher) 

X𝑛',q%ggggg = √2.3Á𝑆9𝑓� = 166𝑛𝑉 (just 10% higher) 

 
13.3 1/f Noise Filtering 
As discussed earlier, 1/f noise power depends on the ratio between the upper band 
limit and the lower band limit of the noise spectrum, that is '1

'>
, and not on the 

individual values 𝑓O and 𝑓=. To better understand filtering 1/f noise we can change the 
integration variable from f to ln(f)  
 

𝑛'%ggg = 𝑆H𝑓�& |𝑊(𝑓)|%
1
𝑓

"

.
𝑑𝑓 = 𝑆H𝑓�& |𝑊(𝑙𝑛𝑓)|%

"

#"
𝑑(𝑙𝑛𝑓) 
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From the formula we can see that the filtered power n�%ggg is proportional to the area of 
|W|% plotted in logarithmic frequency scale (LIN-LOG plot, not a bode plot!), 
whereas the filtered power n�%ggg (white noise) is proportional to the area of |W|% plotted 
in linear frequency scale (LIN-LIN). 
In both cases, the noise power depends on the frequency span covered by |𝑊|%. 
However, the frequency span is measured differently: 
 
• For white noise, by the difference of the bounds (𝑓O − 𝑓=) 
• For 1/f noise, by the logarithmic difference, i.e. by the ratio of the bounds ('1

'>
	) 

 
The noise effect of a filter for white noise is well visualized in the linear-linear 
diagram of the weighting function |𝑊(𝑓)|% while the noise effect of a filter for 1/f 
noise is well visualized in the linear-log diagram of the weighting function 
|𝑊(𝑙𝑛𝑓)|%. 
 
Let’s clarify this concept with a couple of examples: 
 
Example 1:  

 
Figure 13.3 Noise bandlimit of an RC integrator 
 
In this example we can see that: 
 

• white noise spans from f=0 to 𝑓6 and it gives a finite noise power 
• 1/f noise spans from f=0 to 𝑓/ and it gives a divergent noise power. The 

area of the equivalent weighting is infinite because in the lin-log plot the 
f=0 is at -∞. That’s why we also need to filter at low frequency. 

• the upper band limit for the 1/f noise is approximated, nevertheless, the 
approximation gives a negligible error as shown before. 
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Example 2: 

 
Figure 13.4 Noise bandlimits: RC lowpass plus CR high-pass 
 
In this example we have both an integrator (RC) and a differentiator (CR). 
We can see that: 
 

• white noise spans from 𝑓6� to 𝑓6D and it gives a finite noise power. The 
frequency span is 𝑓6D − 𝑓6�. In most of the cases 𝑓6D ≫ 𝑓6� and the span 
is well approximated by 𝑓6� 

• 1/f noise spans from 𝑓'� to 𝑓'D and it gives a finite noise power. 
 

In both the cases the areas of the green (white noise) rectangle and the red (1/ noise) 
rectangle give us the value of the total noise power in our system. This graphical 
representation will be extremely useful to compare different filter from the intuitive 
point of view. 
 
13.4 Intrinsic High-Pass Filtering by Correlated Double 
Sampling (CDS) 
In all real cases, even with DC coupled electronics, the weighting function is 
inherently not extended down to zero frequency because as intrinsic high-pass 
filtering is always present. This intrinsic high-pass filtering action arises because the 
system operation is started at some time before the acquisition of the measure and 
because the operation is started from zero value. 
Let’s clarify this point with an example: if we want to measure the amplitude of the 
output signal of a DC amplifier, we must perform a zero-setting; the baseline voltage 
is preliminary adjusted to zero, or it is measured, recorded and then subtracted from 
the measured signal. This operation may be done a long time before the signal 
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measurements or repeated before each measurement. This is exactly the same 
procedure we perform when we turn on our weight scale, or when we make its tare. 
We will see now how zero-setting produces a high-pass filtering action, in fact the 
baseline sample is subtracted from the signal sample (both acquired with instant 
(delta) sampling). In the time domain, the weighting is 
 

𝑤9(𝑡) = 𝛿(𝑡) − 𝛿(𝑡 + 𝑇) 
 
 
 
 
 
 
Figure 13.5 weighting function in time 
 

This is called Correlated Double Sampling (CDS). 
Applying the Fourier Transform, we obtain the weighting for the frequency domain 
 

 𝑊9(𝜔) = 𝐹[𝑤9] = 1 − 𝑒=�( = 1 − cos(𝜔𝑇) − 𝑖	sin	(𝜔𝑇) 
 

For the noise computation we need |𝑊(𝜔)9|%. 
 

|𝑊(𝜔)9|% = [1 − cos	(𝜔𝑇)]% + [sin(ωT)]% = 2[1 − cos(𝜔𝑇)] = 4[sin	(
𝜔𝑇
2 )]

% 
 

At 𝜔𝑇 ≪ 1 a low frequency cutoff is produced 
 

 |𝑊(𝜔)9|% ≈ (𝜔𝑇)%  
 

(for x<<1 it is sinx ≈ 𝑥) 
 
In figure 13.6 we can see a comparison of the action of a baseline subtraction to the 
action of a high-pass CR filter (differentiator) in a bode diagram.  

 
Figure 13.6 Bode diagram of |𝑾|𝟐 for CDS and CR filter 
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We have just seen that subtracting the baseline of a signal corresponds to performing 
a high-pass filtering action. 
Let’s now analyse and compare in detail the action of a CDS and of a CR with respect 
to the white noise and 1/f noise. 
 
White noise analysis: 
 

 
 
Figure 13.7 LIN-LIN plot of |𝑾|𝟐. Remember that the white noise power is ∝ area of	|𝑾|𝟐.	 NB: the 3 
filters shown have equal cutoff T=RC=1 
 
As we have seen, from the graphical point of view, it is easier to study the white noise 
in a lin-lin plot. From the figure 13.7 we can infer that the CDS |𝑊9|% oscillates 
around 2; it’s area is exactly the same as for a constant |𝑊9|% = 2; wheareas the CR 
differentiator has a cutoff at low frequency 𝑓 < 𝑓= =

)
b\]

 while at higher frequency 
|𝑊]\|% ≈ 1. 
Therefore, the white noise output power of the CDS is double of the unfiltered noise, 
and approximately double of the filtered output of the CR (actually even more than 
double). This can be intuitively understood also in the time domain since the white 
noise is acquired twice, in the baseline and in the signal sampling, and the two noise 
samples are uncorrelated, hence their power sum up quadratically. 
 

𝑛9%gggg = 𝑆9& |𝑊(𝑓)|%
'1

.
𝑑 

 

 
Figure 13.8 comparison between CDS and CR. Note the doubling factor for the CDS white noise  

 
 



Filtering: 1/f noise and high-pass filter 1 

 

 159 

1/f noise analysis:  
 

 
Figure 13.9 LIN-LOG plot. Examples with equal cutoff T=RC plotted for T=1 
 
We can now perform the same analysis for the 1/f noise. We saw that, in this case, 
from the graphical point of view it is clearer to use a lin-log plot. Also in this case we 
limit 1/f noise power 𝑛'%ggg with a low pass 𝑓O, but with 𝑓O ≫

)
-
  

 

𝑛'%ggg = & |𝑊(𝑓)|%
𝑆9𝑓�
𝑓

'1

.
𝑑𝑓 = 𝑆9𝑓�& |𝑊(𝑓)|%

'1

.
𝑑(𝑙𝑛𝑓) 

 
At low frequency 𝑓 ≪ )

-
 the |𝑊9|% and |𝑊]\|% have the same cut off (T=RC). 

At higher frequency |𝑊]\|% ≈ 1 whereas the |𝑊9|% oscillates around a mean value 
2, so that: 
 

& |𝑊9(𝑓)	|%d(lnf)	
'1

.
≈ 2& |𝑊]\(𝑓)	|%d(lnf)	

'1

.
 

 
Therefore  

𝑛',9%ggggg ≈ 2𝑛',]\%gggggg 
 
Also 1/f noise power output of CDS is approximately double with respect to a CR 
high-pass with equal cut off. 
 
13.4.1 Time domain analysis of CDS and CR for white noise 
performance  
We can understand how thw white noise is filtered by a CDS analysing it also in the 
time-domain. 
White noise power at the output of the filter can be computed as 
 

𝑛9%gggg = 𝑆9& 𝑅,,(𝜏)
!"

#"
𝑘VV9(𝜏)𝑑𝜏 
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𝑅,,(𝜏) is the autocorrelation of band-limited white noise and 𝑘VV9(𝜏)	 is the 
autocorrelation of CDS weighting function. 
 

𝑅,,(𝜏) = 𝑛,%ggg𝑒
#|1|
-A  

 
𝑇6 is the noise autocorrelation time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13.10 CDS weighting function, autocorrelation of CDS weighting function, autocorrelation of 
band-limited white noise 
 
Substituting in the above equation, we find: 
 

𝑛9%gggg = 𝑆9& 𝑅,,(𝜏)
!"

#"
𝑘VV9(𝜏)𝑑𝜏 = 2𝑛,%ggg − 𝑅,,(𝑇) − 𝑅,,(−𝑇) =

= 2𝑛,%ggg ∙ §1 − 𝑒
#-
-A © 

 

 
 
• Noise with very short correlation time is doubled: 

If  𝑇6 ≪ 𝑇 we have 𝑛9%gggg ≈ 2𝑛,%ggg 
 
• Noise with long correlation time is strongly attenuated: 

If 𝑇6 ≫ 𝑇 we have 𝑛9%gggg ≈ 𝑛,%ggg ∙ 2
-
-A
≪ 𝑛,%ggg 
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Now we can do the same analysis for a CR filter. Let’s start with writing and 
plotting the weighting function of a CR filter. 
 

𝑤]\(𝑡) = 𝛿(𝑡) − 𝑤{(𝑡) = 𝛿(𝑡) −
1
𝑇'
𝑒
#|(|
-+  

 

 
Figure 13.11 weighting function 𝑤"# 
 
Now we calculate the autocorrelation of the CR weighting function: 
 

𝑘VV]\(𝜏) = 𝛿(𝑡) −
1
2𝑤{

(|𝜏|) = 𝛿(𝑡) −
1
2𝑇'

𝑒
#|1|
-+  

 

 
Figure 13.12 steps for the calculation of the autocorrelation of 𝑤"# 
 
We can calculate the white noise output power, using the same formula we used 
before 
 

𝑛9%gggg = 𝑆9& 𝑅,,(𝜏)
!"

#"
𝑘VV]\(𝜏)𝑑𝜏 = 𝑅,,(0) − 2& 𝑅,,(𝜏)

!"

.

1
2𝑤{

(|𝜏|)𝑑𝜏

= 𝑛,%ggg − 𝑛,%ggg ∙ &
1
𝑇{

"

.
exp	[−𝜏(

1
𝑇6
+
1
𝑇{
)]𝑑𝜏 

 

𝑛9%gggg = 𝑛,%ggg §1 −
𝑇6

𝑇6 + 𝑇{
© = 𝑛,%ggg

𝑇{
𝑇6 + 𝑇{
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With CR we can state that: 
 

• Noise with very short correlation time is practically passed as it is, not doubled 
as for CDS: 

If  𝑇6 ≪ 𝑇{ we have 𝑛9%gggg ≈ 𝑛,%ggg 
 
• Noise with long correlation time is strongly attenuated at half level of CDS:  

If  𝑇6 ≫ 𝑇{ we have 𝑛9%gggg ≈ 𝑛,%ggg ∙
-:
-A
≪ 𝑛,%ggg 

 
As a conclusion, zero-setting by correlated double sampling (CDS) produces a high-
pass filtering action that limits the power of 1/f noise. 
The interval T between zero setting and measure in most real cases is quite long 
(from a few seconds to several minutes) so the high-pass band-limit 𝑓=,' is quite 
low. This is a main drawback because the filtering is not very effective since 1/f 
noise is limited just to a moderately low level, which may be higher than that of 
white noise. 
Comparing CDS and CR shows a further drawback: CDS output noise power is 
approximately double than CR one even with equal band-limit 𝑓=,'. This occurs 
because in the baseline sampling all the frequency components are acquired, but in 
the subtraction only those with 𝑓 ≪ )

-
 concur to reduce 1/f noise. 

 
13.5 Correlated Double Sampling with Filtered Baseline (CDS-
FB) 
As we have seen, baseline sampling is intended to acquire the contributions of the 
low frequency components that we want to subtract from the measurement. However 
instant sampling(delta-like) acquires all the frequency components at low and high 
frequency and by subtracting them we double the noise passed above the CDS cutoff. 
An intuitive remedy is to modify the baseline sampling in such a way to acquire only 
the low-frequency components.  
We can perform this task sampling the baseline with a low-pass weighting function 
𝑤{(𝑡) with band-limit 𝑓{6 which includes only the frequencies to be subtracted. An 
example can be acquiring the baseline by means of a gated integrator with narrower 
filtering band 𝑓'6 ≪ 𝑓O, where 𝑓O is the upper band-limit of the noise. 
 

 
Figure 13.13 weighting function with filtered baseline. 
 



Filtering: 1/f noise and high-pass filter 1 

 

 163 

NB: we still consider cases with long interval 𝑇3 ≫ 𝑇{, from zero-setting to 
measurement. 
Let’s compute the weighting function in the frequency domain and analyze its 
behavior at low and high frequency as we made for the CDS: 
 

𝑊9q(𝜔) = 𝐹[𝑤9q(𝑡)] = 𝐹[𝛿(𝑡) − 𝑤{(𝑡 + 𝑇)] = 1 − 𝑒=�-𝑊{(𝜔) 
 
Since 𝑊{(𝜔) = 𝑠𝑖𝑛𝑐(�-:

%
) is real at any 𝜔, we have 

 
 𝑊9q(𝜔) = 1 −𝑊{(𝜔) cos(𝜔𝑇) − 𝑖𝑊{(𝜔)sin	(𝜔𝑇) 
 

|𝑊9q(𝜔)|% = 1 +𝑊{
%(𝜔) − 2𝑊{(𝜔) cos(𝜔𝑇) 

 
• At low frequency 𝑓 ≪ 1/𝑇 it is 𝑊{(𝑓) ≈ 1 and 𝑊9q has a high-pass cut off 

equivalent to a CR differentiator with RC=T 

|𝑊9q(𝜔)|% ≈ (𝜔𝑇)% = 𝜔%(𝑇/ +
𝑇{
2 )

% 

𝑓=' ≈
)
%&-

= )

%&(-6!
#:
* )

  cut off frequency 

 
• At high frequency above the GI low-pass cut off 𝑓6 ≫ 1/2𝑇{ it is |𝑊{(𝑓) ≈ 0 

so that |𝑊9q(𝑓)|% ≈ 1 
 
• In the intermediate range )

-
≪ 𝑓 ≪ 1/2𝑇{ it is roughly 𝑊{ ≈ 1 so that roughly 

it is |𝑊9q(𝑓)|% ≈ 2(1 − 𝑐𝑜𝑠2𝜋𝑓𝑇). In this range the average value is about 
|𝑊9q(𝑓)|% ≈ 2, hence we can denote it as double-noise range 

 
 

 
Figure 13.14 example of CDS-FB with 𝑇$ = 101 and 𝑇% = 2. For comparison a CR filter with equal 
cutoff RC=T=𝑇$ + 𝑇% is reported. 
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𝑛%ggg = & 𝑆(𝑓)
'1

.
|𝑊9q(𝜔)|%𝑑𝑓 = & 𝑆(𝑓)

'1

.
[1 +𝑊{

% − 2𝑊{cos	(2𝜋𝑓𝑇)]𝑑𝑓 

 
By approximating 𝑊9q as outlined, the 1/f noise power and white noise power can be 
approximately evaluated as: 
 

𝑛',9q%gggggg ≈ 𝑆9𝑓] ln ¼
𝑓O
𝑓='
½ + 𝑆9𝑓] ln ¼

𝑓{6
𝑓='
½ 

 
       𝑛9,9q%gggggg ≈ 𝑆9(𝑓O − 𝑓=) + 𝑆9(𝑓{6 − 𝑓=) ≈ 𝑆9𝑓O + 𝑆9𝑓{6 

 
In CDS-FB the noise-doubling effect is strongly reduced with respect to the simple 
CDS as it occurs only in the range from the low-frequency cutoff to the GI filtering 
band-limit.  
In cases where the GI band-limit is much smaller than the noise band-limit (𝑓O ≫
𝑓{6) the effect of noise doubling is practically negligible 
 

𝑛',9q%gggggg ≈ 𝑆9𝑓] ln §
'1
'>+
©      and    𝑛9,9q%gggggg ≈ 𝑆9𝑓O 

 
13.6 Correlated Double Filtering (CDF) 
Both in the CDS and in the CDS-FB we acquired the signal using a delta in order 
to compare the filters with the simple sample&hold. We understood in the previous 
chapters that sample&hold it is not efficient for the noise reduction. So, in this 
paragraph we will study the use a gated integrator for the signal filtering in a CDS 
configuration. The gated integrator is quite efficient for the white noise component, 
but not for the 1/f component. An improvement is obtained by subtracting from the 
GI acquisition of the pulse another GI acquisition over an equal time interval where 
the pulse is not present (before it or after it). This approach has the same conceptual 
foundation as CDS, but here the two samples are both filtered by the GI: it is 
therefore called “Correlated Double Filtering” (CDF). 
This approach can be extended to cases where any constant-parameter low-pass 
filter LPF is employed for filtering the white noise component and 1/f component 
is also present. In such cases, the measure can be obtained as a difference of two 
samples of the LPF output: a sample taken at the pulse peak and a sample taken 
where the pulse is not present. 
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Figure 13.15 weighting function with filtered baseline and filtered signal. The LPF is a gated integrator 
only for graphical reasons. 
 
The weighting of the CDF is equal to the convolution of CDS’ weighting with LPF 
weighting 

𝑤r{(𝛼) = 𝑤rJ(𝛼) ∗ 𝑤{(𝛼) 
 
This is translated in the frequency domain to 
 

𝑊r{(𝜔) = 𝑊rJ(𝜔) ∙ 𝑊{(𝜔) 
 
For the noise computation   
 

|𝑊r{(𝜔)|% = |𝑊rJ(𝜔)|% ∙ |𝑊{(𝜔)|% 
 
And since  

|𝑊rJ(𝜔)|% = 2(1 − cos𝜔𝑇) = 4𝑠𝑖𝑛%(
𝜔𝑇
2 ) 

 
We have  

|𝑊r{(𝜔)|% = 2(1 − cos𝜔𝑇)|𝑊{(𝜔)|% = 4𝑠𝑖𝑛%(
𝜔𝑇
2 )|𝑊{(𝜔)|% 

 
The main features of CDF reflect the fact that it is a combination of CDS and LPF: 

• The LPF cuts the noise at high frequencies with its LPF band-limit 𝑓{ 
• The CDS cuts the noise at low frequencies with its HPF band-limit  

𝑓=r ≈
)
%&-

 
• The CDS enhances the noise in the passband between the band-limits (with 

enhancement factor roughly 2) 
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We can now compute the weighting function in the frequency domain when a GI is 
used as LPF 
 

wF(α) = rect0,TF(α) = rect/.#
) ,0.#)

Aα− 𝑇𝐹2 B↔WF(ω) = 𝑠𝑖𝑛𝑐(𝜔𝑇𝐹2 )𝑒
−𝑗𝜔𝑇𝐹
2  

 
But the module does not depend on the phase factor (i.e. on the time shift) 
 

|WF(ω)| = N𝑠𝑖𝑛𝑐 A
𝜔𝑇𝐹
2 BN = N𝑠𝑖𝑛𝑐A

𝜔𝑇𝐹
2 B /𝜔𝑇𝐹2 N 

Therefore 
 

|WDF|) = 2(1− 𝑐𝑜𝑠𝜔𝑇) ∙ |𝑊𝐹|
2 = 2(1− 𝑐𝑜𝑠𝜔𝑇) ∙ 	𝑠𝑖𝑛𝑐2 A𝜔𝑇𝐹2 B

= 4𝑠𝑖𝑛𝑐2 A𝜔𝑇𝐹2 B ∙ sin2	(𝜔𝑇2 ) 

That is  
 

|WDF|) = 2(1− 𝑐𝑜𝑠𝜔𝑇) ∙
sin2 O𝜔𝑇2 P

O𝜔𝑇2 P
2 = 4 ∙

sin4 O𝜔𝑇2 P

O𝜔𝑇2 P
2  

 

 
Figure 13.19 Plot of |𝑊&%|' computed for the case of time shift T=𝑇( and integration time=1  
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Filtering: 1/f Noise and 
High-Pass Filter 2 
 

After studying 1/f noise in the previous chapter, we will here analyze some solutions 
to reduce its effect using both constant-parameters and switched-parameters filters. 
The proposed solutions will be described and discussed both in time and frequency 
domain. 
 
14.1 Pulse signals in presence of 1/f noise 
A typical situation in signal recovery is the need to measure the amplitude of a signal 
in presence of significant noise. Usually, noise consists of both 1/f and wideband 
contribution.  
In presence of colored noise, the classic approach to evaluate the optimum filtering 
option requires a noise-whitening filter first, and then the design of a matched filter; 
unfortunately, in presence of 1/f noise the task is arduous since: 
 

• 1/f noise sets a remarkably difficult mathematical problem 
• it makes the whitening filter difficult to design: it can’t be implemented with 

lumped circuit components, but only with distributed-parameters solutions 
(distributed RC delay lines, etc.) 

 
We can try to simplify this task resorting to some properties of 1/f noise. In the 
previous chapter we observed that 1/f noise power mainly depends on the span of the 
filter band-pass measured in terms of bandlimit ratio; therefore, 1/f noise is markedly 
sensitive to the lower bandlimit level while it weakly depends on the shape of the 
filter weighting function. 
On the other side, wideband noise depends on the span of the band-pass measured by 
the bandlimit difference, hence it is weakly sensitive to the lower bandlimit level and 
it markedly depends on the shape of the weighting function. 
We can exploit these differences between 1/f and wideband noise to devise an 
alternative approach leading to quasi-optimum filtering. 
We will proceed in two steps: first of all, we will design a main filter for signal and 
wideband noise only (that is, neglecting the presence of 1/f noise); then, we will take 
into account the 1/f component and we will evaluate the additional noise power that 
it adds to the main filter output. In the (lucky) cases where this 1/f noise power is 
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smaller than the wide-band noise (or at least comparable), the main filter may be 
considered sufficient without any additional filtering stage; otherwise, we will design 
an additional filter to limit 1/f noise contribution trying to avoid a significant loss of 
signal. It is quite obvious that filtering 1/f noise will require some sort of high-pass 
filtering action. 
We will now consider a well-known specific case to understand some issues related 
to the two-step design approach introduced to deal with both 1/f and wideband noise. 
A pulse signal coming with both 1/f and wideband noise is generated by a high-
impedance sensor; this case has been already discussed in chapter 12 considering 
only wideband noise. Since the two-step approach here presented suggests neglecting 
the 1/f noise contribution at first, we will use the same approach of chapter 12 in this 
phase and we will design a whitening filter. At the output, the signal will feature an 
exponential waveform, while the noise is wideband with low-frequency spectral 
density SB. We have seen that the optimum filter in this case is not practically 
feasible; therefore, we will here use an approximation, that is a constant-parameter 
RC Integrator. We have seen that a good approximation of the matched filter is 
obtained with RC=Tnc, giving an upper bandwidth limitation at frequency fS. As a 
result, the signal amplitude is roughly VS ≈ A fS, where A is the DC amplitude of the 
pulse transform, while the contribution of white noise at the output of the RC 
Integrator is:     
            

 
 
Let’s now take into account also the 1/f noise component, which brings a significant 
1/f spectral density SBfC/f at the whitening filter output.  
At high frequency, the 1/f component is limited by the upper bandlimit fS of the 
matched filter.  
At low frequency, the 1/f component can be limited by a lower band-limit fi set by 
an additional constant-parameter filter. With fi << fS, the output power of the 1/f noise 
can be evaluated as 

 
 
However, the constant-parameter high-pass filter operates also on the signal: it 
attenuates the low frequency components and thus causes a loss in pulse amplitude, 
hence a loss in S/N. The reduced amplitude is roughly evaluated as 
 

 
 

In order to limit the signal loss, fi /fS must be low; e.g. to keep the loss below 5% it 
must be 

 

2
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that is 

 
 
To limit 1/f noise below the white noise level it is necessary that: 
 

 
Which means that 

 
 

and since for keeping the signal loss <5% it must be  
 

 
we need to have 

 
 
This means that the goal can be achieved only if the 1/f noise component is low or 
moderate. Note that fC and fS are data of the problem, they cannot be changed. In 
cases where fC exceeds the above limit, a constant-parameter high-pass filter is NOT 
a suitable solution to limit the 1/f noise power. 
In conclusion, constant-parameter high-pass filters can be useful to limit 1/f noise 
only in specific cases, i.e. when 1/f noise intensity is moderate. In all other cases, the 
introduction of a high-pass filter can either have a detrimental effect on the signal 
pulse amplitude or no significative effect on 1/f noise contribution, depending on the 
filter parameters.  
 
14.2 Basic constant-parameter High-Pass Filter 
In the previous paragraph we tried to use a constant parameter high-pass filter to 
reduce the effect of the 1/f noise. Before proceeding with the study of more 
complicated filters, let's take a step back and refresh the knowledge on the CR filter. 
First of all, the delta response of the filter is: 

 

 
Figure 14.1 delta response of constant-parameter high-pass filter 
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And its step response is 

 
 

And finally, its transfer function is 
 

 
 

While the step response is typically intuitive for the student, the same does not hold 
for the delta response. In the following, we will try to give a point of view that can 
make the calculation of the delta easier. 
Let’s start from this easy and intuitive consideration: 
 

High-Pass Filter =  All-Pass  -  Low-Pass Filter 
 

We can then use this consideration to move in the frequency domain 
 

 
 

And then to calculate the delta response coming back to the time domain. 
The same approach can be followed also from the circuit point of view. Let’s take 

a very simple network:  
Where 
Vi  = input voltage 
VC =  low-pass filtered Vi  
VR =  high-pass filtered Vi  
 
The Kirchoff’s voltage law give us 
 

Vi = VC + VR 
And therefore 

VR  = Vi – VC 
That bring us to the same results 
 

High-pass filtered Vi = resistor voltage = 
= input voltage Vi – capacitor voltage = 
= input voltage Vi – Low-pass filtered Vi 
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Let’s now apply the constant-parameter high-pass filter to white noise. With only a 
high-pass CR filter the white noise power n�%ggg is divergent, therefore we consider 
here also a low-pass filter with band-limit fs >> 1/RC. 
The high-pass band-limit fi of the CR filter with weighting function W(f) is defined 
by 
 

 
 

The computation of the integral can be avoided by recalling that 
 

CR high pass filter = all-pass – RC low-pass filter 
 

and therefore, the high-pass band-limit fi of the CR filter is equal to the low-pass 
band-limit fh of the RC filter 

 
 

We can now apply the same filter to the 1/f noise. Also in this case, with only a 
high-pass CR filter the noise power n�%ggg is divergent, therefore we consider again also 
a low-pass filter with band-limit fs >> 1/RC. 
The high-pass band-limit fi f  of the CR  filter is defined by 
 

 
 
In this case the first integral is fairly easily computed, and it shows that 
 

 
that is, for fs >> fp  
 

 
 
14.3  Constant-Parameter High-Pass Filters in measurements of 
pulses in sequence 
Using a constant-parameter high-pass filter, we have to consider some aspects when 
we play with a sequence of pulses.  
Let’s analyze the effect of a high-pass filter (RC = TF ) on a pulse rectangular signal 
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Figure 14.2 constant-parameter high-pass filter response to a rect pulse 
 
A pulse that follows a previous one within a fairly short time interval (TD < 5 TF ) 
sums up to the slow tail of the first pulse. Therefore, it starts from a down-shifted 
baseline, so that its measured amplitude is smaller than the real one. 

 

 
Figure 14.3 constant-parameter high-pass filter response to a couple of rect pulse 
 
For periodic pulses with fairly short repetition period TR << TF , the superposition 
of slow pulse-tails shifts down the baseline by a VS that makes zero the net area of 
the output signal   
 

 
Figure 14.4 constant-parameter high-pass filter response to a periodic pulse 
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We can so calculate the repetition-rate-dependent baseline-shift as 
 

 
We can therefore draw certain final considerations on the high-pass filtering 
(differentiator action) of the CR filter. 

• The effect on noise is advantageous: by cutting off the low frequencies it 
markedly decreases the 1/f noise power (and mildly reduces the white noise 
contribution) 

• The effect on the signal is disadvantageous: 
• it decreases the signal amplitude by cutting off the low frequencies of the 

signal, hence fi must be kept low (fi << fS of the pulse) in order to limit the 
signal loss. However, this limits also the reduction of 1/f noise 

• it generates slow tails after the pulses, which down shifts the baseline and 
thus it can cause an error in the amplitude measurement of a following pulse  

• With a periodic sequence of equal pulses, all pulses find the same baseline 
shift. The amplitude error is constant, systematically dependent on the 
repetition rate and can be calculated. 

• With random-repetition pulses (e.g. pulses from ionizing radiation detectors, 
for example) the pulses occur randomly in time. Hence the random 
superposition of tails produces a randomly fluctuating baseline shift. The 
resulting amplitude error is random: in this case the effect is equivalent to 
that of an additional noise source. 

 
In conclusion, a differentiator action is desirable on noise, but NOT on the signal. 

 
14.4 Switched-Parameter High-Pass Filter: The Baseline 
Restorer 
In the previous paragraph we understood that the main problem in the use of a 
constant-parameter high-pass filter to limit the effect of the 1/f noise is that we have 
to find a trade-off between attenuation of the noise and effect on the signal. 
To solve this trade off we introduce now a switched-parameter filter. The idea is to 
work in a different way on noise and signal using the possibility to switch the 
parameters. The circuit we will use is shown in figure 14.5 

 
Figure 14.5 switched-parameter high-pass filter  
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The circuit is quite the same of the standard constant-parameter filter, but we 
introduced a switch to stop the differentiator effect when the signal is present. 
We can compare the weighting function of both constant and switched parameter 
filter on the same signal 
 

 
Figure 14.6 constant-parameter vs switched-parameter high-pass filtering 
 
The weighting function of the switched-parameter filter is then composed of two 
different parts: a delta, corresponding to the sampling we make when the switch 
is open and the signal passes without modifications; a low-pass filtering action 
which is carried out when the switch is closed and it is used to read the value of 
the low frequency components of the input waveform 
 

 
with 

 
In fact, as soon as S is open (at the pulse onset, i.e. at α=TP), charging of C stops 
and voltage VC  stays constant at the stored value.  
The name of this filter is Baseline Restorer (BLR). 
In the case of a sequence of pulses, we can open the switch every time the signal 
is present; in this case, we can easily see that our filter can be written as: 
 

BLR weighting = (All-Pass – Low-pass Boxcar) weighting 
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Figure 14.7 switched-parameter filter for sequence of pulses 
 
BLR principle is alike filtered zero-setting, but with a basic advantage: the high-
frequency band limit fif  (high-pass) can be very high providing a very short TP, 
which can be achieved with a fast electronically-controlled switch. 
Let’s move in the frequency domain. 
 

BLR weighting = All Pass – Low-pass 
 

 
 

The low-pass weighting function in the frequency domain is: 
 

 
 

so, we can find the BLR weighting in the frequency domain as follows: 

 
Now, we can analyze the BLR weighting function for noise 
 
|𝑊9(𝜔)|% = [1 − 𝑅{ cos𝜔 𝑇3 − 𝐼{ sin𝜔 𝑇3]% + [𝐼{ cos𝜔 𝑇3 − 𝑅{ sin𝜔 𝑇3]% =

= 1 + 𝑅{% + 𝐼{% − 2𝑅{ cos𝜔 𝑇3 − 2𝐼{ sin𝜔 𝑇3 =
= 1 + |𝑊{|% − 2𝑅{ cos𝜔 𝑇3 − 2𝐼{ sin𝜔 𝑇3 

 
The study of this function can be very complicated and strongly depends on the 
number of pulses that are used. To try to better understand how it works using 
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relatively simple computation let’s consider only cases where the interval between 
pulses is much longer than TF so that 
 

 
and 

 
therefore  
 

 
 

In the low-frequency region                     with the approximations 
 
 

 
 

 
we get 

 
 
and in the lower region  
 
 

 
 

As a result, the BLR has a cutoff equivalent to a CR high-pass with RC= TP+TF 

 
It is possible to derive that the high-pass band-limit for the white noise is 
 

 
 

• fni is equal to that of the equivalent CR High-pass filter 
• fni is equal to bandlimit of the low-pass section in the BLR circuit 
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Figure 14.8 The Bode diagram highlights the low frequency cut-off, in this example: BLR with TP = 1 
and TF = 10, CR filter with RC = TP + TF  

 
Figure 14.9 Lin-Lin diagram highlights the low frequency cut-off, in this example: BLR with TP = 1 and 
TF = 10, CR filter with RC = TP + TF  
 
We can look at the effect of the BLR on 1/f noise; to this aim, we plot the weighting 
function in a Lin-Log scale in order to evaluate the area of the |W|2 

 
 

Figure 14.10 Lin-Log diagram highlights the low frequency cut-off, in this example: BLR with TP = 1 and 
TF = 10, CR filter with RC = TP + TF  
 

It is possible to derive that the high-pass band-limit for 1/f noise is 
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• ffi  is equal to that of the equivalent CR High-pass filter 
• ffi is equal to bandlimit of the low-pass section in the BLR circuit 

 
Let’s go in more detail about how to fit it in the real application. The BLR filtering 
is ruled by: 
 

1. TP = time delay from switch opening to pulse-amplitude measurement.  
There is no choice: TP is equal to the rise time from pulse onset to peak.   
In fact, TP can’t be shorter than the rise of the pulse signal and it should be 
as short as possible to effectively filter 1/f noise. 

2. TF = RC differentiation time constant: it has to be selected to optimize the 
overall filtering of noise. The question is: how TF should be selected to 

a) provide a good reduction of the 1/f noise power and 
b) avoid a significant enhancement of the white noise power 
 

Since the BLR cut-off is set by 1/(TP +TF ), a very short TF might look advisable, but 
it is not: a BLR with TF << TP operates like a CDS, hence it doubles the white noise 
and remarkably enhances also 1/f noise above the cut-off frequency. 
In the following discussion about the selection of TF, we will consider a wideband 
noise spectrum coming with the signal. Let’s start with a time-domain analysis of 
BLR filtering. To this aim, we need to study the autocorrelation function of the BLR 
weighting function. In figure 14.11, a graphical method to calculate this function and 
the corresponding result are sketched.  
Starting from the weighting function, that is  
 

 
we can calculate the kδδ autocorrelation of δ(α), that is still a delta, the kFF   

autocorrelation of wF (that has been studied in the previous chapters) and finally the 
cross-correlation function of wF and δ. 
Considering a white noise band-limited by a single pole, we recall that its 
autocorrelation function is: 
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1|O|
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Now, we need to multiply the two autocorrelation functions (noise and BLR) and 
compute the integral of the product. 
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Figure 14.11 Graphical construction of the BLR autocorrelation 
 

 
Figure 14.12 BLR autocorrelation and noise autocorrelation 
 
The total noise is then 
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and finally 

 
 

With fast differentiation, i.e. with TF << Tn, it is quantitatively confirmed that the 
BLR acts like a CDS with T=TP 

 

 
With TF << Tn the effect of BLR on band-limited white noise depends on how long 
the correlation time Tn is with respect to the delay TP 

 
• with short correlation time (wide band) the noise is doubled: 

with Tn < TP/5 it is  

 
• with moderate correlation time (moderately wide band) the noise is enhanced: 

with Tn » TP/2 it is 

 
 

• only with long correlation time (low-frequency band) the noise is attenuated 
(note that anyway the level is double of that given by a simple CR filter with 
equal cut-off, that is with TF = RC=TP).  
with Tn > 10TP it is 

 
A graphical summary is shown in figure 14.13. 

 

 
Figure 14.13 BLR filtering with fast differentiation 
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Going back to the expression of noise 
 

 
 
We can now consider the case where TF is NOT negligible with respect to Tn. In this 
case, the effect on white noise depends also on the size of TF compared to Tn and TP: 
a long TF can limit the white noise enhancement so let’s evaluate how long TF must 
be in the various cases of noise correlation. 
 
With short correlation time, i.e. Tn ≈ TP /10, it is 
 

 
 

to keep    𝑛9%gggg < 1.05	𝑛,%gggg      we need   TF > 20 Tn ≈ 2 TP  
 
With moderate correlation time, i.e. Tn ≈ TP /2, it is 
 

 
 
To keep 𝑛9%gggg < 1.05	𝑛,%gggg    in this case we need   TF > 7Tn = 3,5TP 
 
With long correlation time, i.e. Tn > 10 TP, it is 

 

 
 
With such a low-frequency noise, the BLR acts as a CR constant-parameter filter 
(with equal time constant TF = RC). 
The most interesting case for us is noise with moderate Tn. In fact, when the BLR 
works on the output of an optimum (or approximate-optimum) filter for wideband 
noise, the correlation time Tn and delay Tp are comparable, since they are both 
closely related to the band-limit of the signal pulse.  
 

2 2 1 1 2
P

n

T
Tn

B x
n F

T
n n e

T T

-é ùæ ö
= ê + - úç ÷ç ÷+ê úè øë û

2 2 1 n
B x

n F

T
n n

T T
æ ö

» +ç ÷+è ø

2 2 2
2

21 1 1 0,73n n
B x x

n F n F

T T
n n n

T T e T T
é ù é ùæ ö» + - = +ê ú ê úç ÷+ +è øë û ë û

2 2 21 n F
B x x

n F n F

T T
n n n

T T T T
é ù

» - =ê ú+ +ë û



CHAPTER 14     

 

 182 

 
Figure 14.14 BLR filtering with slow differentiation 
 
We conclude that avoiding any enhancement of the white noise requires a fairly 
slow BLR differentiation, i.e. a quite long TF  

 

 
 

This approach is suitable also for 1/f noise filtering, notwithstanding that making 
TF longer than TP shifts down the BLR cut-off frequency, hence reduces the 
attenuation of 1/f noise. This is counterbalanced by the fact that the enhancement 
of 1/f noise at frequencies above the cutoff is limited by the low-pass filtering in 
the baseline subtraction, whereas with short TF it is remarkable. 
 
14.5 BLR summary 
 

• The BLR is a high-pass filter that acts on noise and disturbances without 
affecting the pulse signal 

• The BLR is a switched-parameter filter: the low-pass section within the high-
pass filter structure is a boxcar integrator that acquires the baseline only in the 
intervals free from pulses 

• The BLR can thus establish a high-pass band-limit at a high value (suitable for 
reducing efficiently the 1/f noise output power) without causing the signal loss 
suffered with a constant-parameter high-pass filter having the same band-limit 

• The high-pass band-limit enforced by the BLR is given (with good 
approximation) by the low-pass bandlimit of the low-pass section in the BLR 
circuit structure 

• The combination of: (1) optimum filter designed for the case of pulse signal in 
presence of wideband noise only (i.e. without 1/f noise) and (2) BLR 
specifically designed (for reducing the actual 1/f noise without worsening the 
wide-band noise) provides in most cases a quasi-optimum filtering solution 

5F PT T³



 

CHAPTER     15 

Band-Pass Filters 1 
Bandpass filters are very useful to recover narrow-band signals. The aim of this 
chapter is to introduce the student to the bandpass filter, discussing why and how 
this type of filter is used, which are its figures of merit, how it can be implemented 
using simple circuits and its applications. The theory of amplitude and frequency 
modulation will also be presented in this chapter.   
 
15.1 Introduction 
    In electronics, information is often carried by signals that do not have a DC 
component and all their energy (and so information) is concentrated in a narrow 
portion of the spectrum. In these cases, bandpass filters are useful since they 
eliminate both the low-frequency and high-frequency components of the system 
that are undesired. Some types of sensors (e.g. MEMS gyroscopes) naturally encode 
the information using narrow-band high-frequency signals, but we will see that 
bandpass filters can be very useful even when working with sensors that output 
quasi-dc signals (e.g. load cells). 
In fact, we know that many physical systems, including semiconductor devices, are 
subject to statistical fluctuations with power spectral density proportional to the 
inverse of frequency, commonly called 1/f noise or pink noise. 1/f noise is very 
strong at low frequency (theoretically infinite at DC) and sensors that normally have 
quasi-dc output are often driven in such a way that their output is shifted at high 
frequency without losing information, this practice is called modulation and will be 
explained in paragraph 15.4. After modulation, if a bandpass filter is used, the pink 
noise can be filtered out obtaining a higher S/N. 
Narrow signals (and so bandpass filters) are also very common in RF 
telecommunication for two main reasons: low-frequency signals cannot be 
transmitted easily using electromagnetic waves since they require very long 
antennas (antenna length must be of the same order of magnitude as the 
wavelength). Also, the use of narrow-band signals allows multiple streams to be 
transmitted at the same time on the same medium: the disposable bandwidth can be 
divided in contiguous non-overlapping portions called channels. At the receiver 
end, a single stream can be then reconstructed using a bandpass filter that filters out 
all the channels except the one of interest. 
Narrow-band signals concentrate their power in a small part of the spectrum, and 
this allows filtering out most of the noise reaching a higher S/N with respect to a 
broadband signal with the same power. Narrow-band signals are therefore preferred 
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in applications that require a low power consumption, a long transmitting range and 
a high reliability. 
As rule of thumb, a signal can be considered narrow-band if its energy spectrum is 
centered around 𝑓O and its spectrum width  ∆𝑓O is much smaller than	𝑓O. 
 
15.2 Characteristics 
In figure 15.1 the generic modulus and phase of a bandpass-like transfer function is 
shown. From the modulus diagram, we can see that the transfer function has a zero 
in the origin and then two poles. As a result, the filter attenuates the frequencies 
before the first pole 𝑓� and those after the second pole 𝑓�: these regions are called 
Stop Band. Between the two poles, we have the range of frequencies that we do not 
want to attenuate: this is called Pass Band and it also represents the bandwidth of the 
filter. To make the frequencies in the pass band to pass unaltered through the filtering 
stage, we ideally should have a gain equal to 1 (0dB) and a phase shift equal to 0°. 
Actually, if we could implement an ideal band-pass filter, this would be able to 
completely eliminate the unwanted frequencies; however, the ideal filter would 
require vertical transitions at the edges of the pass band, but this is not feasible. 
Therefore, we will always speak of attenuation in the stop band.  

 

Figure 15.1: Modulus and Phase frequency Response 
 
Here we can introduce the concept of roll-off. The roll-off is the steepness of the 
transition between stop band and pass band; it is usually measured in dB/decade. 
The roll-off provides information about the selectivity of the filter we are 
considering: a larger roll-off means a steeper transfer function. This parameter gives 
us an idea on how the filter is able to cut the unwanted frequencies and so it is a very 
important information when we have to choose a filter for a specific application. 
Another important parameter of a bandpass filter is the fractional bandwidth 𝑠, which 
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is defined as the ratio between the filter bandwidth and the central frequency of the 
pass-band range:  

𝑠 =
𝛥𝑓
𝑓.

 
 

In resonant filters, we will see in the next chapter that the quality factor Q of the 
oscillator is equal to inverse of the fractional bandwidth: 
 

𝑄 =
𝑓.
∆𝑓 

 

15.3 Real Case Examples 
Let see how narrow signals can be measured in presence of white noise and also in 
presence of 1/f noise. Let us consider a signal centered at fS and with bandwidth  
 

∆𝑓O = 1	𝐻𝑧 
and a small amplitude  
 

𝑉𝑠	 ≤ 100	𝑛𝑉. 
 

In order to make it suitable for processing circuits, the signal is amplified by a DC-
coupled wide-band preamplifier with upper band-limit of 1 MHz. This preamplifier 
introduces also some noise. In particular, we consider the case of a white noise with 
spectral density Á𝑆E = 5	 6�

√��
 and a )

'
 component with a corner frequency  𝑓� =

2	𝑘𝐻𝑧. 
Depending on the value of  𝑓O, the situation is different, and the results show opposite 
conclusions.  
For instance, if we have 𝑓O = 100	𝑘𝐻𝑧 , that is a frequency much higher than the 
noise corner frequency, we could apply a simple high-pass filter with a band limit of 
10	𝑘𝐻𝑧 in order to eliminate the 1/f component obtaining a rms noise 
 

Á𝑣6% =	Á𝑆H ∙ Á𝑓D − 𝑓= 	≈ 	Á𝑆H ∙ Á𝑓D = 5	𝜇𝑉	
	
Which corresponds a very low Signal-to-Noise Ratio: 
 

𝑆
𝑁 =

100	𝑛𝑉
5	𝜇𝑉 = 0,02	 ≪ 1 

 
In particular, a Signal-to-Noise Ratio smaller than 1 means that the signal is 
completely buried into noise. 
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This result can be observed experimentally on an oscilloscope display, as reported in 
figure 15.2: it is easy to notice that our signal is practically invisible on the display 
since it is completely covered by the noise. 

 Figure 15.2: Small signal buried in white noise 
 
Nevertheless, if we analyze the power spectrum we can point out the effective 
power density of the signal and of the noise.  
The power 

𝑃O =	
𝑉O%

2 = 50	 ∙ 	10#�	𝑉% 

is within a bandwidth  
 

∆𝑓O = 1	𝐻𝑧 
 

So, the effective power density of the signal is  
 

Á𝑆O 	≈ 	X
31
∆'1
= 70	 6�

√��
. 

 
It is thus evident that the narrower is our signal the higher is our power density. 
On the other hand, the effective power density of our white noise is  
 

Á𝑆H	 = 5	 6�
√��

. 
 

If we then consider the ratio between the effective power densities, we can notice 
that: 

Á𝑆O
Á𝑆H	

= 14	 ≫ 1	

	
So, we can conclude that, in this case, with a bandpass filter having bandwidth ∆𝑓H 
matched to the signal band ∆𝑓O, we can obtain a good Signal-to-Noise ratio: 
 



Band-pass filters 1 

 

 187 

𝑆
𝑁 =	À

𝑃O
𝑆H∆𝑓H

=	À
𝑆O	∆𝑓O
𝑆H	∆𝑓H

~	À
𝑆O
𝑆H
= 14	 ≫ 1 

 

If 𝑓O is comparable to 𝑓�, we have to consider also the contribution of 1/f noise in the 
calculation of the total spectral density: 
 

Á𝑆6(𝑓O) = 	À𝑆H +	𝑆H	
𝑓�
𝑓O

 

 

In this case we could replicate the same calculations finding a value of the spectral 
density at 𝑓O equal to 8.7	 6�

√��
 and so a signal-to-noise ratio of 8 that is lower than 14 

but greater than 1. 
Finally, if 𝑓O is lower than 𝑓� , the situation is different: in this case we have to use, 
for example, 𝑓O = 10	𝑚𝐻𝑧, which is well below the corner frequency. We will again 
use a high pass filter with a band limit of 𝑓= = 1	𝐻𝑧 in order not to filter out the signal. 
Then the noise referred to the input is 
 

Á𝑣6% ≈	À𝑆H ∙ 	𝑓D +	𝑆H ∙ 	𝑓� ∙ 𝑙𝑛	 §
𝑓D
𝑓=
© ≈ Á𝑆H ∙ 𝑓D ≈ 5	𝜇𝑉	

	
So, this situation in practically equal to the previous cases. In fact: 
 

𝑆
𝑁 =	

𝑉O
Á𝑣6%

≤ 0,02	 ≪ 1	

 
Again, the effective power density of the signal is 
 

Á𝑆O 	≈ 	X
31
∆'1
= 70	 6�

√��
. 

	
but if we focus on the noise at the signal frequency, now we have a significant 
contribution given by the )

'
 noise:  

Á𝑆6(𝑓O) = 	À𝑆H +	𝑆H	
𝑓�
𝑓O
= 	14.2	Á	𝑆H 	≈ 71	

𝑛𝑉
√𝐻𝑧

	

	
In this case we get a signal peak that is not so easy to distinguish from the noise. In 
particular, the ratio between the two power densities is about one so the signal to-
noise ratio is very poor even if we employ a bandpass filter. 
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In this case we have to find a way to transfer the signal to higher frequency in order 
to be able to eliminate )

'
	noise. In particular, we have to move the signal to higher 

frequencies before it mixes with )
'
 noise introduced, for example, by the preamplifier. 

 
15.4 Sinusoidal Signal Modulation 
Until here we have seen that a narrow-band signal with some superimposed white 
noise can be recovered in a very efficient way using a matched Band-Pass Filter even 
if the signal is buried into noise. 
If there’s also some 1/f noise the situation is more complex: the lower the signal 
frequency, the higher is 1/f noise and recovering the signal might be impossible even 
using a matched bandpass filter (i.e. the SNR is very poor). In this scenario, a possible 
solution is the following: we shall try to “move” the signal away from the dominant 
noise. In other words, we can try to transfer the information at higher frequency in 
order to avoid the dominant influence of 1/f noise. 
The problem is how to operate this transfer without losing information. The solution 
is the modulation. It is worth noting that we have to pay attention about when we 
operate this modulation: if we modulate the signal after it mixed with 1/f noise, 
modulation would be useless because we would treat the noise and the signal in the 
same way, and we would not obtain any SNR improvement. 
Modulation consists in multiplying in time our input signal 𝑥(𝑡) with a reference 
signal called carrier 𝑚(𝑡). 
A typical carrier is a sinusoidal signal 
 

𝑚(𝑡) = 𝐵 𝑐𝑜𝑠 (2𝜋𝑓<𝑡) 
 
that performs the so-called sinusoidal modulation. In fact, in this case we have that 
the spectrum of the carrier is equal to 
 

𝐹[𝑚(𝑡)] 	= 9
%
𝛿(𝑓 − 𝑓<) +

9
%
𝛿(𝑓 + 𝑓<) 

 
so multiplying the signal in time with 𝑚(𝑡)	 means shifting the signal spectrum 𝑋(𝑓) 
around ±𝑓<, as we wanted. 
 
We recall that the Fourier Transform of 𝐵 𝑐𝑜𝑠 (2𝜋𝑓<𝑡) is equal to two deltas centered 
in ±𝑓< with amplitude  9

%
, 𝐹[𝐵𝑐𝑜𝑠(2𝜋𝑓<𝑡)] =

9
%
𝛿(𝑓 − 𝑓<) +

9
%
𝛿(𝑓 + 𝑓<) ; 

convolving a signal with deltas centered in 𝑓< means to shift the signal itself at 𝑓<. 
 
15.4.1 Modulating ideal DC signals  
An ideal DC signal concentrate all its information at f=0. In time we have 𝑥(𝑡) = 𝐴, 
while in frequency we have 𝑋(𝑓) = 𝐴𝛿(𝑓). 
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If we modulate a DC signal with a cosinusoidal signal, at output we obtain: 
 

	𝑦(𝑡) = 𝐴 ⋅ 𝐵 𝑐𝑜𝑠 (2𝜋𝑓<𝑡 + 	𝜑𝑚) 
 

where φm has to be constant, and thus we can consider it now equal to zero. In 
frequency we have: 

𝑌(𝑓) = 𝑋(𝑓) ∗ 𝑀(𝑓) = & 𝑋(𝜏) ⋅ 𝑀(𝑓 − 𝜏)𝑑𝜏
!"

#"
 

That is  

𝑌(𝑓) = 𝐴 ⋅
𝐵
2 [𝛿(𝑓 − 𝑓<) + 𝛿(𝑓 + 𝑓<)] 

 
As we wanted, now the information is carried by the amplitude of a (high-frequency) 
cosine. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.3: Ideal DC Signal Modulation 
 
15.4.2 Modulating Narrow-Band signal   
Now we can try to analyze the case of Narrow-Band signals. As we saw in the 
introduction this type of signals is an approximation of a low frequency signal with 
a sufficiently small bandwidth. 
The main issues of analyzing Narrow Band signals arises from the fact that the 
convolution in Frequency Domain is more complicated than in Time Domain 
because: 
• The spectrum (differently from time domain) runs from −∞	to +∞ (instead of 0 

to +∞) 
• The spectrum 𝑋(𝑓) is a complex function and so we have to deal with complex 

values. 
• In general, modulus of convolution is not convolution of modulus  

 
|𝑌(𝑓)| ≠ |𝑋(𝑓)| ∗ |𝑀(𝑓)| 
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The issue presented above is simplified and it can be neglected if  
 
• 𝑋(𝑓) is confined in a Narrow Bandwidth 𝛥𝑓O 
• 𝑀(𝑓) has a 𝑓<much greater than the bandwidth of the signal: 𝑓< >> 𝛥𝑓O 

If these two hypotheses are satisfied, there is no sum of complex numbers because at 
each frequency there is only one dominant term and the others can be neglected. So, 
the convolution between the two signals can be computed in this way: 
 
• Shift in frequency every component of 𝑋(𝑓) by +𝑓< and −𝑓< 
• Shift in phase every component of 𝑋(𝑓) by +𝜑< and −𝜑< 

we can conclude that in this particular case it is true that 
 

|𝑌(𝑓)| ≈ |𝑋(𝑓)| ∗ |𝑀(𝑓)| 
and 

|𝑌(𝑓)|% ≈ |𝑋(𝑓)|% ∗ |𝑀(𝑓)|% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15.4: Narrow-Band Signal Modulation 
 
15.4.3 Modulating Sinusoidal signal  
In case we have to deal with a Sinusoidal signal  𝑥(𝑡) = 𝐴𝑐𝑜𝑠(2𝜋𝑓O𝑡) , the situation 
is only a bit different. Recall that the Fourier transform of 𝑥(𝑡), 𝑋(𝑓), is the sum of 
two symmetric deltas centered in ±𝑓Owith amplitude |

%
. The same holds for the carrier 

𝑚(𝑡) = 𝐵 cos(2𝜋𝑓<𝑡 + 𝜑). 
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Under the hypotesis 𝑓� ≫ 𝑓O, the final result is graphically shown in figure 15.5 

Figure 15.5: Sinusoidal Signal Modulation 
 
It can also be verified analytically by recalling the trigonometric equivalence 
 

𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽) =
1
2 𝑐𝑜𝑠(𝛼 − 𝛽) +

1
2 𝑐𝑜𝑠(𝛼 + 𝛽) 

we obtain 
 
 𝑦(𝑡) = 𝑥(𝑡) ⋅ 𝑚(𝑡) 	= '(

)
𝑐𝑜𝑠[2𝜋(𝑓7 − 𝑓+)𝑡 − 𝜑] +

'(
)
𝑐𝑜𝑠[2𝜋(𝑓7 + 𝑓+)𝑡 + 𝜑] 

 
15.5 Square Wave Signal Modulation 
The implementation of sinusoidal modulation requires analog multipliers that are 
slightly complex and noisy. What if we use a square wave instead of a sinusoidal 
signal as a carrier? 
Modulation with a square wave reference m(t) can be implemented with 
circuits based simply on switches and amplifiers, without analog multipliers. 
Let’s consider a square wave 𝑚(𝑡) with period )

'0
 , amplitude 𝐵 (2𝐵 peak to peak) 

and DC component 𝐵. 
If we look at its Fourier transform, we have delta shaped frequency components at 
odd multiples of square wave frequency, (2ℎ − 1)𝑓< ,with amplitude %9

&(%D#))
 

 

𝑀(𝑓) = 𝐵8𝛿(𝑓) +T(−1)/90*
2𝐵

𝜋(2ℎ − 1) [𝛿(𝑓 − (2ℎ − 1)𝑓+) + 𝛿(𝑓 + (2ℎ − 1)𝑓+)]
1

9:*
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Figure 15.6: Spectral components of a generic square wave 
 
As in sinusoidal modulation, also square wave modulation shifts the input signal 
spectrum in frequency, and if 𝛥𝑓O << 𝑓<: 
 
We have 

|𝑌(𝑓)| ≈ |𝑋(𝑓)| ∗ |𝑀(𝑓)| 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.7: Square wave modulation 
 
If the square wave is not perfectly symmetrical (e.g. it has asymmetrical amplitude 
and/or duration of positive and negative parts) there is also a finite DC component 
with amplitude B0 (possibly very small). The carrier DC component does NOT 
transfer the signal X in frequency, it just «amplifies» it by B0  so it must be avoided 
in order to reduce the 1/f noise contribution. 
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After the analysis of the square-wave modulation effect on signals, we will now 
discuss how to implement a circuit to perform such modulation. 
A simple implementation employing two single-ended amplifiers can be the one 
shown in figure 15.8 

 

Figure 15.8: Simple circuit for square wave modulation 
 
In principle, the sketched circuit performs the modulation using a square wave with 
zero DC value. However, to have zero-DC component the gains of the two amplifiers 
must be exactly the same (in module), but this is practically not feasible leading to 
an unwanted DC component. 
To solve this problem, we can use either a differential amplifier, as shown in figure 
15.9 
 

 

Figure 15.9: Single amplifier square wave modulator 
 
or a single single-ended amplifier used as chopper, as shown in figure 15.10. 

 

Figure 15.10: Chopper as modulator 
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The last configuration is the simplest, but it generates a DC component which 
amplitude is dependent on the signal value (𝐵. =

9
%
). 

In any case, square-wave modulators are much simpler than analog multipliers that 
are required to perform a sinusoidal modulation; this approach requires a lower 
number of transistors (lower cost) and it also improves the noise performance. 
The main source of noise in square-wave modulator topologies are the switches that 
can be implemented either using MOSFETs (presence of )

'
 noise, fast switching 

frequencies) or using mechanical metal switches, which are less noisy but have 
switching frequency limited to about 100Hz. In any case, the total added noise is 
typically much lower than that introduced by similar analog multipliers. 
 
15.6 Summary 
• As intuitive, narrow-band filtering is very effective to recover narrow-band 

signals immersed in wide-band noise 
• Besides wide-band noise, however, other components with power density 

increasing as the inverse frequency (1/f noise) are ubiquitous in electronic 
circuitry (amplifiers etc.). In the low-frequency range they are indeed dominant. 

• At low frequencies the 1/f noise added by the circuitry is overwhelming, so that 
the solution of narrow-band filtering becomes progressively less effective and 
finally insufficient for recovering signals with progressively lower frequency  

• An effective approach to recover a low-frequency signal is to move it to higher 
frequency before the addition of 1/f noise. That is, to modulate the signal before 
the circuitry that contains the 1/f noise sources 

• Narrow-band filtering can then be employed to recover the modulated signal 
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Band-Pass Filters 2  
 
In the previous chapter we discussed the benefits of exploiting a band-pass filter 
when the signal is limited to a relatively small range of frequencies, allowing the 
attenuation or rejection of any component outside the range of interest. In this 
chapter, two solutions to implement a band-pass filter with analogue passive 
circuits are discussed, i.e. CR – RC and LRC resonant filters. 

 
16.1 Introduction 
In previous chapters we studied in details low-pass filters and high-pass ones. Now 
we focus on band-pass filters that can be used to filter out a certain range of 
frequencies and to attenuate frequencies outside this range. In these terms, band-
pass filters can be seen as a combination of a low-pass filter (RC) and a high-pass 
one (CR): this is the case of CR – RC filters. Another example of an analogue 
passive band-pass filter is an LRC circuit, that is a combination (it can be used either 
in the series or in the parallel configuration) of a resistor, an inductor and a 
capacitor. In this chapter, both these types of circuits are discussed. 
 
16.2 Band-pass filtering with a combination of High-pass and 
Low-Pass filters (CR - RC) 
One of the band-pass filtering methods is the CR– RC. This filter basically consists 
of an integrator (low-pass filter) followed in cascade by a differentiator (high-pass 
filter) as sketched in figure 16.1. This is a second-order filter, because it has two 
reactive components (the two capacitors). 

 
Figure 16.1: RC-CR band-pass filter circuit. 
 
The transfer function can be computed considering the property of the Laplace 
transfer functions stating that the equivalent transfer function of the cascade of 
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multiple independent stages is the product of the transfer functions of its single 
blocks: 

 

𝐻(𝑠) =
𝑉ZL(
𝑉=6

=	
1

1 + 𝑠𝑅)𝐶)
∙

𝑠𝑅%𝐶%
1 + 𝑠𝑅%𝐶%

 
 

To figure out the noise filtering performance of the circuit, the transfer function in 
the frequency domain is required. The function can be obtained by replacing 𝑠 =
𝑗𝜔 = 𝑗2𝜋𝑓: 

 

𝐻(𝑓) = 	
1

1 + 𝑗𝑓/𝑓/)
∙

𝑗𝑓/𝑓/%
1 + 𝑗𝑓/𝑓/%	

	, 
 

where 𝑓/) =
)

%&\)])
 is the pole of the low-pass filter and 𝑓/% =

)
%&\*]*

 is the pole of 
the high-pass filter. 
Considering the case with equal poles 𝑅)𝐶) = 𝑅%𝐶% , so 𝑓/) = 𝑓/% = 𝑓/ , the 
transfer function becomes: 
 

𝐻(𝑓) =
𝑗𝑓/𝑓/

|1 + 𝑗𝑓/𝑓/}
% 

and its square magnitude is:  
 	

|𝐻(𝑓)| =
𝑓/𝑓/

1 + |𝑓/𝑓/}
% 

 
At the center of the band, 𝑓 = 𝑓/	,	the peak value and the phase are: 
 

l𝐻|𝑓/}l =
)
%
 arg µ𝐻|𝑓/}¶ = 0 

 
In figure 16.2 the time-domain response of a CR-RC filter to a step input is shown 
and compared with the output of a CR and a RC filter. The CR filter, given a 
sufficiently-small time constant, outputs a voltage that is almost proportional to the 
time-derivative of the input waveform (CR differentiator); as a result, it is able to 
preserve the fast variations of the input while its output goes to zero in steady state. 
On the other hand, the RC filter, given a sufficiently-large time constant, outputs a 
signal that is almost proportional to the integral of the input signal (RC integrator); 
as a result, it reaches the same final value of the step input signal with a slow 
transition. The CR-RC filter shows a step-response that is the combination of the 
main features of its two building blocks, i.e. a smooth response upon fast input 
variations and a null output in steady state. 
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Figure 16.2: CR, RC and CR-RC time domain responses for a step function input. 

 

 
Figure 16.3: Absolute value of the frequency domain transfer function for CR, RC and CR-RC. 

 
In figure 16.3, a comparison in the frequency domain is reported; in particular, the 
modulus of the CR-RC transfer function is shown along with the modulus of its 
building blocks. The modulus of both CR and RC filter is equal to 1/√2 at the 
frequency 𝑓 = 𝑓/. The CR filter attenuates low frequency signals (𝑓 < 𝑓/) while 
passes the high frequency signals. The RC filter shows the opposite trend. As a 
result of the cascade of these two stages, the CR-RC filter has a gain equal to 1/2 at 
𝑓 = 𝑓/ and it is able to attenuate both low and high frequency components. 
As a rule of thumb, we can consider the input components to be attenuated by the 
CR-RC filter if the modulus of the transfer function is lower than 1/√2, that is 3dB 
lower than its peak amplitude; the corresponding boundary frequencies are called 
cut-off frequencies. For a band-pass filter, we can define the signal bandwidth as 
the frequency range that exists within two cut-off frequencies. Hence, the 
bandwidth can be simply defined as the difference between the lower cut-off 
frequency (𝑓/�) and the higher cut-off frequency (𝑓/D) points.  
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l𝐻|𝑓/�}l = l𝐻|𝑓/D}l =
l𝐻|𝑓/}l
√2

=
1
2√2

 

 
With 𝑥 = 𝑓/𝑓/, the equation can be written as: 
 

𝑥
1 + 𝑥% =

1
2√2

 

 
that gives as solution 𝑥�,D =	√2 ± 1, so in terms of frequency 𝑓/�,/D =	|√2 ± 1}𝑓/. 
Therefore, the signal bandwidth is 
 

∆𝑓/ =	𝑓/D − 𝑓/� = 2𝑓/. 
 

We can observe that the bandwidth obtained with this topology is not narrow, since 
it’s the double of the peaking frequency. In particular, this might be a problem if 
the input signal is centered at high frequencies, i.e. MHz. In this case, the bandwidth 
of the bandpass filter could be of the order of MHz. This means that the input signal 
may not be filtered as needed and a great amount of noise is not filtered at all.  
To confirm this theory, the equivalent white-noise bandwidth will be computed in 
the following. 
From the definition of white-noise bandwidth, we can write: 
 

𝑛9%ggggg = 𝑆9l𝐻|𝑓/}l
%∆𝑓6 = 𝑆9 1 4Ç ∆𝑓6 

 
And by comparison with the computed output power: 

 

𝑛9%ggggg = 𝑆9& l𝐻|𝑓/}l
%"

.
𝑑𝑓6 = 𝑆9&

|𝑓/𝑓/}
%

¯1 + |𝑓/𝑓/}
%°
% 	𝑑𝑓6

"

.

= 𝑆9	𝑓/&
𝑥%

[1 + 𝑥%]%	
"

.
𝑑𝑥 = 𝑆9	𝑓/&

2𝑥
[1 + 𝑥%]% 	

𝑥
2

"

.
𝑑𝑥

= 	𝑆9	𝑓/ çè−
𝑥
2

1
1 + 𝑥%è.

"

+
1
2&

1
1 + 𝑥%	

"

.
𝑑𝑥é

= 	𝑆9	𝑓/ 	
1
2
|𝑎𝑟𝑐𝑡𝑔(𝑥)|." = 𝑆9	𝑓/ 	

𝜋
4	 

 
the equivalent white noise bandwidth may be calculated as follows: 

 

∆𝑓6 =	𝜋	𝑓/ =
1
2𝑅𝐶 =	

𝜋
2	∆𝑓/	 
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As discussed for the signal, this is a quite large value that will prevent the use of 
this kind of filter in many applications. 
For the sake of completeness, the δ-response of the CR-RC will be now computed: 

 

𝐻(𝑠) =
𝑠𝑅𝐶

(1 + 𝑠𝑅𝐶)% =
1

1 + 𝑠𝑅𝐶 −
1

(1 + 𝑠𝑅𝐶)% 

 
By applying the inverse Laplace transform we obtain 
 

ℎ(𝑡) =
1
𝑅𝐶 𝑒

# (
\] −

𝑡
(𝑅𝐶)% 𝑒

# (
\] 

  
Starting from the ℎ(𝑡), we can compute the autocorrelation function, and then we 
can calculate its value in zero. By definition of autocorrelation function in 𝑡 = 0: 
 

𝑘DD(0) = 	& ℎ%(𝛼)	𝑑𝛼
"

.
=

1
4𝑅𝐶 

 
By handling the Fourier transform properties:  
 

𝑘DD(0) = & |𝐻(𝑓)|%𝑑𝑓
"

#"
=	 l𝐻|𝑓/}l

%	2∆𝑓6 =	
1
2	∆𝑓6 

 
which confirms that:   ∆𝑓6 =	

)
%\]

=	&
%
	∆𝑓/	. 

 
 

16.3 LRC Resonant Filter 
In this section, the LRC resonant filter is discussed. This kind of filter can be 
implemented with different topologies. In particular, we will here discuss the 
parallel resonant filter.  
The circuit that implements the parallel resonant filter is composed by a resistor, an 
inductor and a capacitor all in parallel to each other as shown in figure 16.4. This is 
typically used with current input signals. 
 

 
Figure 16.4: LRC parallel circuit configuration. 
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A parallel resonant circuit stores the circuit energy in the magnetic field of the 
inductor and in the electric field of the capacitor.  
The circuit analysis is based on the calculation of the transfer function between the 
voltage output signal and the current input one, which is an equivalent impedance.  

 

𝑍 =
𝑉ZL(
𝐼=6

=	
1

𝑗𝜔𝐶 + 1
𝑗𝜔𝐿 +

1
𝑅
= 	𝑅	

𝑗𝜔 𝐿𝑅
(1 − 𝜔%𝐿𝐶) + 𝑗𝜔 𝐿𝑅

 

 
The total equivalent impedance of the circuit is given by: 

 

𝑍(Z( = 𝑅	||	𝑍�	||	𝑍] =	
𝑅

1 − 𝑗𝑅	 µ 1𝑋]
+ 1
𝑋�
¶
= 	

𝑅

1 + 𝑗𝑅	 µ𝜔𝐶 − 1
𝜔𝐿	¶

 

 
 

The impedance of the circuit has its maximum magnitude at the resonant frequency 
𝑓., that is when the inductive impedance is the opposite of the capacitive impedance, 
i.e.	𝑋� = - 𝑋] . Hence, the resonant frequency is given by the relationship: 

 

𝑋� + 𝑋] = 0 𝜔Z =	X
)
�]

 

 
where 𝜔Z = 2π𝑓Z is the resonant angular frequency. 
As a result, the total impedance of the parallel circuit at resonance assumes its 
maximum value and it is equal to just the value of the resistance:  
 

𝑍(Z((𝜔Z) = 𝑅 
 
Let’s study in more detail the impedance of this filter. Denoting by  
 

𝐻(𝜔) = 	
𝐼ZL(
𝐼=6

=
1
𝑅	
𝑉ZL(
𝐼=6

=	
𝑗𝜔 1
𝑅𝐶

µ 1𝐿𝐶 −	𝜔
%¶ + 𝑗𝑤 1

𝑅𝐶
 

 
we can write  

𝑍 = 𝑅	𝐻(𝜔). 
 

At the resonance frequency, the reactive impedances cancel each other so that the 
impedance is purely resistive. As a result 
 

 ( ) ( )1 arg 0o oH and Hw w= =
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Another basic parameter is the characteristic resistance Ro, which for the oscillation  
at ω=ωo represents the ratio 
 

(amplitude of voltage on C) / (amplitude of current in L) 
 
and can be written as 

𝑅. = À𝐿
𝐶 

 
The poles of H(𝜔) are defined as: 

 

𝑠),% =	−
1
2𝑅𝐶 	±	

1
2𝑅𝐶 	À1 − 4

𝑅𝐶
𝐿
𝑅

=	−
1
2𝑅𝐶 	±

1
2𝑅𝐶	ì1 −

𝑅%

µ𝑅.2 ¶
%

= −
1
2𝑅𝐶 	±	

À§
1
2𝑅𝐶©

%

−
1
𝐿𝐶	 

defining 

∝.=	
1
2𝑅𝐶 

 
we can rewrite the poles of the transfer function as  
 

𝑠),% =	−∝.±Á∝.%−𝜔Z% 
 

and we can study the behavior of the δ-response as a function of these parameters. 
The δ-response h(t) is: 

• damped (real poles)   if   𝜔Z% <	𝛼.% which implies 𝑅% < µ\G
%
¶
%
 

• critically damped (real poles)  if   𝜔Z% =	𝛼.%   that is if          𝑅% = µ\G
%
¶
%
 

• oscillatory (complex poles)  if   𝜔Z% >	𝛼.%   that is with     𝑅% > µ\G
%
¶
%
 

 
The higher is R with respect to Ro, the lower is the dissipation and the slower is the 
damping of the oscillation. 
Starting from these observations we can define the quality factor that is an important 
parameter of many systems as, for example, a resonator and oscillator. Physically 
speaking, Q is defined as the ratio of the total stored energy divided by the energy 
dissipated over one radian of the oscillation. In LRC resonant filters, it describes 
how under-damped the resonator is; the higher the Q factor the less damping there 
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is. In an electrical resonator circuit, damping is caused by the loss of energy in 
resistive components. 
The Q factor can therefore be described as: 

 

𝑄(𝜔) = 𝜔	
Maximum	Energy	Stored

𝑃𝑜𝑤𝑒𝑟	𝐿𝑜𝑠𝑠  

 
The Q factor depends on frequency, but it is most often represented as function of 
resonance 𝜔Z. 
The maximum energy stored in a resonant circuit at the resonant frequency can be 
easily calculated from either the maximum energy stored in the capacitor or the 
maximum energy stored in the inductor (in general, the total energy is equal to the 
sum but here the computation is simplified since when one component is holding 
its maximum energy, the other one has zero energy in it). 

 
Maximum	Energy	Stored = L	𝐼2<O% = 𝐶𝑉2<O% 

 
Where 𝐼2<O% and 𝑉2<O% are the root mean square (rms) current through the inductor 
and the rms voltage across the capacitor respectively.  
The resistor is the only component in the circuit that dissipates power: 

 

𝑃𝑜𝑤𝑒𝑟	𝐿𝑜𝑠𝑠 = 𝑉2<O𝐼2<O =	
𝑉2<O%

𝑅 = 𝐼2<O%𝑅	 

 
In a parallel LRC resonant circuit: 
 

 𝑄 =	 !H
"#G

=	 $
$G

  

 
The higher is R (R >> Ro) the lower is the dissipation (Q à ∞ for R à∞). 
We can express the transfer function of the circuit as a function of the quality factor 
and 𝑤Z  

  𝐻(𝑤) = 	
$�IHJ

(�H*#	�*)!$�
IH
J

 

 
It is interesting to analyze the behavior of this function varying the quality factor 
Q; in figure 16.5 it is possible to see the δ-response of the filter for different values 
of the Q. 
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Figure 16.5: Plot of the δ-response as a function of the quality factor. 
 
An extremely important parameter of the band pass filter for our purposes is the 
phase and, even more important is the variation of the phase as a function of the 
frequency. We will use this property in the next chapter. 
For the LRC circuit, the phase can be written as: 
 

𝜑 = arg𝐻 (𝜔) = 𝑎𝑟𝑐𝑡𝑔 ñ
𝑄
𝜔𝜔Z

(𝜔Z +𝜔)(𝜔Z −𝜔)ò 

 
so  for ω à + ∞      |H| à 0      ϕ = arg H(ωo) à - π/2  (- 90°) 
       for ω à - ∞       |H| à 0      ϕ = arg H(ωo) à + π/2 (  90°) 
while  for  ω = ωo          H(ωo) = 1     ϕ = arg H(ωo) = 0      
 
The phase-shift given by the filter is exactly zero at exactly the band center,  
but it rapidly increases at different ω. We can calculate the derivative of the phase 
shift as a function of ω at ω= ω0: 
 

 
 
The higher is Q the steeper is the increase, as it possible to see in the figure 16.6. 
 

2
o o

d Q
d w w

j
w w=

æ ö = -ç ÷
è ø
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Figure 16.6: Phase of the LCR as a function of the frequency for two different quality factor. 
 
16.4 Approximations of the LRC transfer function 
We have seen that the transfer function of LRC filter is a quite complicated 
expression so working with it is not trivial. To simplify the task, we can do some 
approximations in order to have a simpler expression of the module of the function. 
First of all, let’s rewrite the square modulus of the transfer function as follows: 

 

|𝐻(𝜔)|2 = 		
𝜔2 𝜔&

2

𝑄2

(𝜔𝑜2 − 𝜔2)2 + 𝜔2
𝜔𝑜	2
𝑄2

=
1

1 + 𝑄
2(𝜔&2 − 𝜔2)2
𝜔𝑜2𝜔2

=
1

1 + 𝑄
2(𝜔𝑜 + 	𝜔)2(𝜔& − 	𝜔)2

𝜔𝑜2𝜔2
	 

 
Now, we can have three possible cases: 
 
1. 𝜔 >> 𝜔Z, “Higher wing” approximation: 

|𝐻(𝜔)| = ì
1

1 +
𝑄2(𝜔Z + 	𝜔)2(𝜔Z − 	𝜔)2

𝜔Z2𝜔2

≈ 	ì
1

1 +
𝑄2(	𝜔)2(	𝜔)2

𝜔Z2𝜔2

≈
𝜔Z
𝜔

1

𝑄
		 

 
2. 𝜔 ≪ 𝜔𝑜, “Lower wing” approximation: 

|𝐻(𝜔)| = ì
1

1 + 𝑄
%(𝜔Z + 	𝜔)%(𝜔Z − 	𝜔)%

𝜔Z%𝜔%

≈	ì
1

1 + 𝑄
%(	𝜔Z)%(	𝜔Z)%
𝜔Z%𝜔%

≈
𝜔
𝜔Z

1
𝑄		 
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3. |𝜔 − 𝜔𝑜| ≪ 𝜔&, “Central lobe” approximation: 

|𝐻(𝜔)| = ì
1

1 + 𝑄
%(𝜔Z + 	𝜔)%(𝜔Z − 	𝜔)%

𝜔Z%𝜔%

≈	ì
1

1 + 𝑄
%(	2𝜔Z)%(	𝜔Z − 	𝜔)%

𝜔Z%𝜔%

≈
1

1 + 4𝑄% µ𝜔Z − 	𝜔𝜔Z
¶
%		 

 
Let’s see with a simulation the validity of these approximations. 

 

 
Figure 16.7: Magnitude approximations with Q=50 and f=1kHz. 
 
Figure 16.7 shows that the lower-wing, central-lobe and right-wing approximations 
well fit the actual transfer function at frequencies much lower, close to or much 
higher than the resonance frequency, respectively.  
In the first part of this chapter, we have introduced the concept of noise bandwidth 
for a band-pass filter. We can do the same for the signal: as frequency boundaries 
of the pass band interval we can take the two -3dB points 𝜔K� and 𝜔K�, where 
|𝐻(𝜔K�)|% =	 |𝐻(𝜔K�)|% = 1/2. The selectivity of the circuit is a measure of its 
ability to reject any frequencies outside this interval. A more selective circuit will 
have a narrower bandwidth, whereas a less selective circuit will have a wider 
bandwidth. 

∆𝜔O =	𝜔K� −𝜔K� 
 

If we use the central lobe approximation for cases in which Q>>1 we get: 
 

|𝐻](𝜔K)|% =	
1

1 + 4𝑄%	(𝜔 − 𝜔Z𝜔Z
)%
=
1
2	 

 
that is     4𝑄%	(�K#�H

�'
)% = 1  
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and we get 
𝜔K� −𝜔Z =	𝜔Z −𝜔K� =	

�H
%�

. 
 

The signal bandwidth thus is 
∆𝜔O =	

𝜔Z
𝑄  

 
Two basic advantages with respect to the CR-RC bandpass filter are quite evident: 
• No signal attenuation at the center frequency; 
• Narrow filtering bandwidth even with moderately high Q values. 

 
The bandwidth for white noise is defined by 
 

∆𝑓6 =	& |𝐻(𝑓)|%𝑑𝑓
"

.
 

 
In cases with Q >> 1 we can use for H(f) the central lobe approximation, taking into 
account that with good approximation |𝐻�(𝑓)|%  is symmetrical with respect to the 
band center 𝑓2, thus obtaining: 
 

& |𝐻(𝑓)|%𝑑𝑓
"

.
	≈ 2& |𝐻�(𝑓)|%𝑑𝑓

"

'G
 

 
Using central lobe approximation, we get: 

 

∆𝑓6 = 2&
1

1 + 4𝑄%	 §𝑓 − 𝑓2𝑓2
©
% 𝑑𝑓	

"

'G
 

if we substitute 2𝑄	 µ'#''
''
¶ = 𝑥 , we obtain 

 

∆𝑓6 =	
𝑓2
𝑄 &

1
1 + 𝑥% 𝑑𝑥 = 	

𝑓2
𝑄 	𝑎𝑟𝑡𝑔(𝑥).

" =			
𝑓2
𝑄 	
𝜋
2

"

.
 

 
since ∆'1

''
=	 )

�
, we can rewrite bandwidth for white noise as follows: 

 

∆𝑓6 =	
𝑓2
𝑄 	
𝜋
2 = 	

𝜋
2 ∆𝑓O 
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 SERIES PARALLEL 

CIRCUIT 

 

 

TRANSFER 
FUNCTION 

𝐻(𝜔) =	
𝑉;<-
𝑉="

=		
𝑗𝜔𝑅𝐿

\ 1𝐿𝐶 −	𝜔
)^ + 𝑗𝜔𝑅𝐿

 

𝐻(𝜔) =	
𝐼;<-
𝐼="

=	
𝑗𝜔 1
𝑅𝐶

\ 1𝐿𝐶 −	𝜔
)^ + 𝑗𝜔 1

𝑅𝐶
 

RESONANT 
FREQUENCY 𝜔; =	H

1
𝐿𝐶 𝜔; =	H

1
𝐿𝐶 

½ POWER 
FREQUENCY 

𝜔*+ = 	−
𝑅
2𝐿 +

X(
𝑅
2𝐿)

' +
1
𝐿𝐶 

 

𝜔*, = +
𝑅
2𝐿 +

X(
𝑅
2𝐿)

' +
1
𝐿𝐶 

𝜔*+ = −
1
2𝑅𝐶 +

X(
1
2𝑅𝐶)

' +
1
𝐿𝐶 

𝜔*, = +
1
2𝑅𝐶 +

X(
1
2𝑅𝐶)

' +
1
𝐿𝐶 

BANDWIDTH ∆𝜔7 =	
𝑅
𝐿 ∆𝜔 =	

1
𝑅𝐶 

Q FACTOR 𝑄 =
1

𝜔;𝑅𝐶
 𝑄 =

𝑅
𝜔;𝐿

 

 
Figure 16.7: Summary of the properties of RLC resonant circuits 

 
16.5 PRO’S AND CON’S OF REAL TUNED FILTERS 
Real capacitors and inductors are not pure C and L. Their equivalent circuits include 
also finite resistances that model the internal sources of energy dissipation that 
inherently limit the Q of resonant circuits. 
 

• In general, the dissipation is higher in components with higher value of L or C. 
Good quality capacitors with low dissipation are available from pF to about 1 μF. 
Inductors are more problematic than capacitors. Good quality components are 
available from nH to a few 100nH. Even components with fairly small L 
(typically a few 10 nH) have non-negligible internal resistance. 

• Stray reactance must not be overlooked. In discrete circuitry stray capacitances 
are in the order of pF and stray inductances are in the order of nH. In integrated 
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circuits the values are much smaller, thanks to the very small physical size of the 
components. 

• Since the resonance is at 𝑓Z = 1/2𝜋√𝐿𝐶, for obtaining a low frequency 𝑓Z high 
values of both L and C are required: in fact, with C=1 μF and L= 100 nH one gets 
𝑓Z =1,26 MHz. Therefore, the Q values really obtained in the tuned filters 
progressively decrease as the desired resonant frequency decreases. 

 
For high frequencies 𝑓Z > 100MHz values of Q > 10 are currently obtained, up to 
almost Q ≈ 100 with clever design and high-quality components. 
 

• For intermediate frequencies 1MHz < 𝑓Z < 100MHz values up to Q ≈ 10 are 
obtained with careful design and implementation 

• For 𝑓Z < 1MHz it becomes progressively more difficult to obtain high Q values as 
the frequency decreases. Anyway, even with moderate Q the performance of the 
tuned filters is remarkable and in many practical cases filters with Q ≈ 5 are really 
satisfactory. 

• Constant-parameter tuned filters are a simple and economical solution, widely 
employed in prefiltering stages and other simple situations, but their use in high-
performance filtering is hindered by some intrinsic drawbacks.  

 
The accuracy and relative stability of 𝑓Z directly depends on that of the C and L 
values. Drift of 𝑓Z	due to aging and temperature must be kept smaller than the filter 
bandwidth, in order to avoid uncontrolled variations of the output signal amplitude 
and phase. In particular, strong phase variations are caused by even small variations 
of 𝑓Z because of the strong 𝑑ϕ/𝑑𝑓at band-center of filters with high Q 
 

• Cascading simple filter stages for improving the cutoff characteristics is not 
practical for narrow-band filters, because they should have very accurately equal 
and stable 𝑓Z. 

• The value of C influences both the center frequency 𝑓Z and the bandwidth ∆𝑓O so 
that it is not easy to design a filter with specified 𝑓Z and specified ∆𝑓O . 

• It is even more difficult to design a filter with adjustable 𝑓Z and constant 
bandwidth ∆𝑓O. 

• In cases where the frequency of a narrow-band signal is not very stable, a filter 
with very narrow bandwidth can be employed only if its center frequency can be 
adjusted to track that of the signal. As above outlined, this is not easy to obtain. 

  



 

   CHAPTER     17 

Band-Pass Filters 3 
 
In this chapter we will introduce the basic function and features of the lock-in 
amplifier. We will describe the principle of synchronous and asynchronous 
measurements and we will show the advantages of synchronous measurements 
compared to the others. Then, we will describe the principle of lock-in amplifier 
and analyze stage-by-stage the behavior of both signal and noise.  
 

17.1 Introduction 
In this chapter, we will discuss the measurement of sinusoidal signals as an example 
of the wider class of narrow-band signals. The measurement of these signals is 
particularly challenging because, due to its narrow band, it is not so easy to acquire 
just the signal without collecting too much surrounding noise. We will study both 
synchronous and asynchronous measurements. 
 
17.2 Asynchronous measurement of sinusoidal signals 
The asynchronous measurement is so called because it does not exploit a reference 
signal, which is a signal that provides information on the frequency and phase of the 
modulated input, but it just works on the input signal. On one hand, these solutions 
are easy to implement and useful to acquire the signal; on the other hand, they present 
a wide set of limitations concerning noise filtering performance and nominal working 
conditions. 
We’ll analyze three reasonable configurations: 
 
• the Mean-square Detector; 
• the Half-Wave Rectifier; 
• the Full-Wave Rectifier; 

 
Before going into details, it’s worth mentioning that these circuit blocks only work 
properly when the input is an almost perfect sinusoidal wave without any tangible 
DC component. To guarantee that this condition is verified, a high-pass (or band-
pass) filter might be needed before them. 
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17.2.1 The Mean-Square Detector 

 
Figure 17.1 Mean-square detector scheme 
 
The idea is to measure the total input mean power. To do that, we can just multiply 
the signal by itself and make the average. Let’s see in more detail: 
 

    
in which the following relationship has been used 
  

𝑐𝑜𝑠%𝑥 =
1 + cos	(2𝑥)

2  

 
We can then remove the components at the double of the original signal frequency 
obtaining the amplitude information. It is important to notice that the low-pass filter 
has no effect of noise reduction: in fact, it does not average the input, it averages the 
square of the input. For improving the S/N it is necessary to insert a filter before the 
Mean-Square detector. 
 
17.2.2 The Half-Wave and Full-Wave Rectifier 

 

 
Figure 17.2 Half-wave and full-wave rectifier schemes 
 
In both cases, we are implementing the classical rectifier in order to extract the 
amplitude of our signal. 
The measurement with a rectifier is not really asynchronous, it is self-synchronized. 
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The sinusoidal signal itself decides when it has to be passed with positive polarity 
and when it passes with negative polarity (in the full-wave rectifier) or not passed 
at all (in the half-wave rectifier). In such operation, the LPF reduces the contribution 
of the wide-band noise, thus improving the output S/N. However, this is true only 
if the input signal is already remarkably higher than the noise, i.e. if the input S/N 
is high.  
As the input signal is reduced, the noise gains increasing influence on the switching 
time of the rectifier, which progressively loses synchronism with the signal and 
tends to be synchronized with the zero-crossings of the noise.  
The loss of synchronization progressively degrades the noise reduction by the LPF. 
With moderate S/N the improvement due to LPF is modest; with low S/N it is very 
weak. With S/N < 1 there is no improvement, there is not even a measure of the 
signal: the output is a measure of the noise mean absolute value. 
In conclusion, meters based on rectifiers can just improve an already good S/N. 
They can’t help to improve a modest S/N and it is out of the question to use them 
when S/N <1. For improving S/N it is necessary to employ filters before the meter. 
 
17.3 Synchronous measurement of sinusoidal signals 
Synchronous detection is a useful technique for extracting low-level signals buried 
below the noise floor. Some examples include measuring light absorption in the 
presence of strong background light or making strain measurements in the presence 
of high noise levels. 
Many electrical systems have increasing noise as the frequency approaches dc (e.g. 
1/f noise in amplifiers, background noise, etc.). The aim is then to move the 
measurement away from these low frequency noise sources, so that you can achieve 
a much better signal-to-noise ratio and detect much weaker signals. 
For example, connecting a resistance measurement bridge, like in the figure, to an 
AC signal source VA will make it possible to measure signals that would otherwise 
be buried in the noise at lower frequencies. This type of signal conversion is known 
as modulation and it makes use of an auxiliary signal, the carrier. The reference is 
instead a signal with equal frequency and phase of the carrier. 
In our example, the AC voltage supply (usually a sine wave) acts as the carrier. The 
result of the modulation is a shift of the signal frequency band to a position around 
the carrier frequency, as explained in the previous chapter. 
In our example we consider a bridge with only one resistance (RT) that is sensitive to 
the the measurand  (i.e. a temperature or a strain). Assuming equal values of the 
three other resistances, V3 is just half the carrier and VT is half the carrier modulated 
by RT. 
The bridge output V+ - V- is therefore an amplitude modulated signal with no DC 
component. 
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 We want to measure the amplitude A of our output signal as it is proportional to the 
measurand  (RT is a strain sensor and its resistance varies following a mechanical 
strain ): 
• in cases with constant strain : A is constant and x(t) is a pure sinusoidal 

signal; 
• in cases with slowly variable strain : A = A(t) is variable and x(t) is 

a modulated sinusoidal signal; 

We will discuss different possible setups (worst to best) to perform the measurement: 
 

• Sample & Hold (single peak sampling) 
• Synchronous measurement with averaging over many samples N >>1 of the 

peak 
• Synchronous measurement with DC suppression by summing positive peak 

and subtracting negative peak samples 
• Continuous Sinusoidal Weighting 

 
Figure 17.3: Simple modulation scheme 

 
17.3.1 Elementary Synchronous Measurement: Peak Sampling 
A first elementary approach is the peak sampling. We are interested in the signal’s 
peak as its amplitude is equal to the quantity A that we want to measure. 
This setup relies on the reference signal, which is required to meet the frequency 
precision constraints. The reference signal is fed to a sampling driver which detects 
the peak and outputs a  to enable the S&H. 
The peak is then sampled by the S&H which provides a DC output signal of 
amplitude A. 
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Figure 17.4: Synchronous measurement with peak sampling 
 

 
Figure 17.5: time domain and frequency domain of peak sampling approach 
 
With this approach, although easy to implement, there is one big drawback in the use 
of this approach: it provides no filtering action.  
As we can see in the fig. above, the frequency response is constant among all 
frequencies and therefore the output noise power is equal to the full input noise 
power. 
 
17.3.2 Synchronous measurement with averaging over many 
samples  
This second approach is an attempt to improve the filtering action with respect to the 
previous method by exploiting the repetitive occurrence of the peaks. 
The modulated signal  
 

x(t) = A cos(2πfSt) 
 
is sampled at its peak N times. Taking N samples is equivalent to gate (or window) a 
free-running sampler and therefore the resulting weighting function is   
 

𝑤(𝑡) = 𝑚(𝑡) ⋅ 𝑟-(𝑡) 
 

where rT(t) is a rect of duration 2T. In the frequency domain, since we have a 
multiplication in the time domain, we will have 
 

 ( ) * TW f M R»
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Figure 17.6: Synchronous measurement with averaging over many samples 
 
where  is a sinc function centered at DC and with  ∆𝑓6 =

)
%-

. 
 

 
Figure 17.7: Time domain and frequency domain behavior of the synchronous measurement with 
averaging over many samples 
 
Comparing the frequency spectrum of  here obtained (figure 17.7) with the one 
obtained with a Single Sampling (figure 17.5) we can see how the filtering action 
was improved. Instead of collecting white noise at all the frequency, now the 
collection is limited to some portions of the spectrum. 
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Figure 17.8: noise collecting bands of the synchronous measurement with averaging over many samples 
 
However, the Sample-Averaging’s noise filtering is still poor. Let’s see why: 
 

• at 𝑓<: band is useful, since we are collecting the signal (and some inevitable 
white noise around it); 

• at DC: band is very harmful, because we are collecting  )
�
  noise without 

acquiring any signal; 
• at 2𝑓<, 3𝑓<, .. : band is harmful, as we are collecting white noise without 

acquiring any signal; 
 
 
17.3.3 Synchronous measurement with DC suppression by 
summing positive peak and subtracting negative peak samples 
 
As we have seen, the biggest drawback of the Sample-Averaging is constituted by 
the narrow band at 0 frequency which collects  )

�
 noise and greatly worsens the Signal-

to-Noise ratio. This new setup offers a solution to this issue.  
Once again, to take 2N samples is equivalent to gate a free-running sampler:  
 

 
 

Note that the number of samples is now 2N (instead of N, as in the previous case) to 
underline the fact that it must be even. The number of positive and negative samples 
has, in fact, to be equal so that the net area is zero. This is necessary as net area zero  

 null DC component, which is precisely what we aimed for.  
Looking at figure 17.10, it is possible to see how the narrow band at 0 frequency is 
suppressed. 
 

( ) ( ) ( )Tw t m t r t= ×
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Figure 17.9 Synchronous measurement with DC suppression by summing positive peak and subtracting 
negative peak samples 
 

 
Figure 17.10: Time domain and frequency domain behavior of synchronous measurement with DC 
suppression by summing positive peak and subtracting negative peak samples 
 
Comparing the filtering with the previous case: 
 

• at 𝑓𝑚: band is useful, since we are collecting the signal (and some inevitable 
white noise around it) 

• at DC: there is no band, so we are not collecting  )
�
 noise anymore  

• at 3𝑓𝑚, 5𝑓𝑚,.. : residual harmful bands, as we are collecting white noise 
without acquiring any signal; 

 
Is it possible to further improve this kind of filter? 
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Figure 17.11: Noise collecting bands of synchronous measurement with DC suppression by summing 
positive peak and subtracting negative peak samples 

 
17.3.4 Continuous Sinusoidal Weighting  
With the Sample-Averaging (alternated peak samples) filtering scheme we have 
achieved the DC suppression; hence the next step is to get rid of the residual bands 
at odd multiples of 𝑓<. The idea is to adopt continuous sinusoidal weighting instead 
of peak sampling. The approach is similar to the one we used for the optimum filter. 
This is a truly efficient filtering: there is just one narrow band at 𝑓< 

 
Figure 17.12: Noise collecting bands of Continuous Sinusoidal Weighting  
 
Let’s check if the filtering is optimized: 
 

• at 𝑓< band is useful, since we are collecting the signal (and some inevitable 
white noise around it) 

• at DC: there is no band, so we are not collecting  )
'
 noise 

• at 3𝑓<, 5𝑓<,.. : there are no more residual harmful bands, thus we are not 
collecting white noise where no signal is present; 

 

In the following paragraph, the implementation of this optimized synchronous 
measurement is addressed.  
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17.4 Basic set-up for synchronous measurement with 
optimized noise filtering 
 

 
Figure 17.13: Basic Set-up for synchronous measurement with optimized noise filtering 
 
This setup consists of two main blocks: 
 

• an Analog Multiplier, which multiplies the input signal x(t) by the reference 
signal m(t) shifting the input signal down by −𝑓<and up by +𝑓< 

• a Gated Integrator, which gates the output of the analog multiplier; 
 
Recalling that the weighting function in the time domain is 𝑤(𝑡) = 𝑚(𝑡) ∙ 𝑟((𝑡), it is 
straightforward that it results from the combined action of the multiplier and the GI. 
 

 
Figure 17.14: Weighting function of the optimized synchronous measurement in the time domain 
 
In the frequency domain the weighting function’s module is: 
 

 
Figure 17.15: Weighting function of the optimized synchronous measurement in the frequency domain 
 
There are two remarks worth making: 
 

• the reference input of the multiplier is a standard waveform, that does not 
depend on the input signal and is thus the same for every input signal 

• the setup is a linear time-variant parameter filter 
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This linear time-variant filter composed by analog multiplier and gated integrator 
(low-pass filter with switched-parameter) has a weighting function similar to that of 
a tuned filter with constant-parameter, but has basic advantages over it: 
 

• Center frequency fm and width Δfn are independently set  
• The center frequency is set by the reference m(t) and locked at the frequency 

fm   
• In cases where fm has not a very stable value the filter band-center tracks it: 

the signal is thus kept in the admission band even if the width Δfn is very 
narrow.  

• The width Δfn =1/2T is set by the GI, it is the (bilateral) passband of the GI 
• Narrow Δfn and high-quality factor Q can thus be easily obtained at any fm  

 
17.5 LOCK-IN amplifier and weighting function 
With averaging performed by a gated integrator, like in the previous paragraph, the 
amplitude A can be measured only at discrete times (spaced by at least the averaging 
time 2T). However, by employing a constant-parameter low-pass filter instead of the 
GI, continuous monitoring of the slowly varying amplitude A(t) is obtained.  Hence 
the setup becomes: 
 

 
 
Figure 17.16: Lock-in amplifier scheme 
 
The constant parameter LPF performs a running average of the output z(t) of the 
output of the multiplicator. The output is continuously updated and tracks the slowly 
varying amplitude A(t). Writing the output of our system we have 
 

𝑦(𝑡) = & 𝑧(𝛼)
"

.
𝑤{(𝛼)𝑑𝛼 = & 𝑥(𝛼)

"

.
𝑚(𝛼)𝑤{(𝛼)𝑑𝛼 

 

By comparison with the definition of the LIA weighting function wL(α)  
 

𝑦(𝑡) = & 𝑥(𝛼)
"

.
𝑤�(𝛼)𝑑𝛼 
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we can extract the weighting function wL(α) of the LIA both in time and frequency 
domain 
 

      
 
The choice of the LPF’s time constant on one side has to preserve the useful signal 
bandwidth, while on the other side it has to strongly attenuate the 2fm component. 
 

 
Figure 17.17: Lock-in amplifier weighting function in time domain and frequency domain 

 
We can then calculate the S/N ratio of our example using a LIA. Starting from our 
modulated signal 

𝑥(𝑡) = 𝐴 cos(2𝜋𝑓<𝑡) 
 
and the reference 

𝑚(𝑡) = 𝐵 cos(2𝜋𝑓<𝑡) 
 

We find the output signal 

𝑦J = 2
𝐴
2 ⋅
𝐵
2 =

𝐵
2 𝐴 

 
While for the noise we can calculate it as 
 

𝑛8�% = 2§
𝐵
2©

%

⋅ 𝑆9H ⋅ 𝛥𝑓6 =
𝐵%

2 ⋅ 𝑆9H ⋅ 𝛥𝑓6 

 

( ) ( ) ( )L Fw m wa a a= × ( ) *L FW f M W@
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So, the signal to noise ratio is 
 

§
𝑆
𝑁©�

=
𝑦J

X𝑛8�%
=

𝐴
Á2𝑆9H𝛥𝑓6

 

 
17.6 LOCK-IN amplifier possible issues 
In the previous section, we discussed the lock-in amplifier, a solution that can allow 
us to obtain a good signal to noise ratio also in case of strong 1/f noise thanks to the 
modulation principle. Let’s analyse now two possible issues of this filter: 
 

• Lock in amplifier noise enhancement 
• Imperfect modulation 
• Phase mismatch 

 

Let’s try to compare the case of DC signal filtered with LPF with the case of an AC 
signal filtered with LIA 
 

 
Figure 17.18: Lock-in amplifier with DC signal 
 
Let us consider the set-up of the figure 17.18 (measurement with resistive sensor)  
now with DC supply voltage VA equal to the amplitude of the previous AC supply.  
With a LPF equal to that employed in the previous LIA we obtain: 
 

𝑦 = 𝐴 
While for the noise 

 
And so 

 
 
This S/N may look better by the factor √2  than the S/N obtained with the LIA, but 
is this conclusion true? 

2
yC nu Fnn S f= ×

2

C

C nu FnyC
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NO, such a conclusion is grossly wrong because the spectral density we are now 
considering is not the same one of LIA. Let’s try to make it clearer showing the 
difference in the frequency domain. If we look at the figure 17.19 is easy to 
understand how the two spectral densities are totally different. Since we are 
integrating the spectral density on a relatively narrow band, we have to compare them 
locally. In the case of DC components, we are considering a narrow band around the 
zero frequency where the local value of the spectral density is much higher than the 
value at 𝑓<. 

 
 
Figure 17.19: Comparison of noise spectral density for DC and AC components 
 
17.6.1 Imperfect modulation 
Ideally, the reference waveform should be a perfect sinusoid at frequency 𝑓<   with 
amplitude B1. Actually, deviations from the ideal case can generate spurious 
harmonics at multiples  𝑘𝑓<  (k = 0, 1, 2 ...) with amplitudes Bk (small Bk << B1 in 
case of small deviations). Moreover, effects equivalent to an imperfect reference 
waveform can be caused by non-ideal operation (non-linearity) of the multiplier. 
Since it is 

|𝑊�(𝑓)| ≅ 𝑀(𝑓) ∗ 𝑊{(𝑓) 
 
each spurious harmonic component of M(f) adds to the LIA weighting function WL a 
spurious passband at frequency kfm with amplitude Bk and shape given by the LPF. 
A spurious passband at f = 0 is particularly detrimental even with small B0 << B1 
because it covers the high spectral density of 1/f noise, is so of fundamental 
importance to avoid any deviation from perfect balance of positive and negative areas 
of the reference that produces a DC component with associated passband at f = 0. 
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17.6.2 Phase mismatch 
It is always possible to have a phase mismatch between the modulated signal and our 
reference. Let’s try to understand the effect of this mismatch. 
Starting from the definition of modulated signal and reference, we have 
 

𝑥(𝑡) = 𝐴 𝑐𝑜𝑠( 2𝜋𝑓J𝑡) 
 

𝑚(𝑡) = 𝐵 𝑐𝑜𝑠( 2𝜋𝑓<𝑡 + 𝜑<) 
 
By exploiting the a well-known trigonometric equation 
 

𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 =
1
2 𝑐𝑜𝑠

(𝛼 − 𝛽) +
1
2 𝑐𝑜𝑠

(𝛼 + 𝛽) 

 
We can easily obtain the result, since 𝑓J= 𝑓< 
 

𝑦(𝑡) = 𝑥(𝑡) ⋅ 𝑚(𝑡) =
𝐴𝐵
2 𝑐𝑜𝑠[𝜑<] +

𝐴𝐵
2 𝑐𝑜𝑠[2𝜋(2𝑓J)𝑡 + 𝜑<] 

 
 
This means that at the LPF’s output there is still a waveform proportional to the 
slowly varying amplitude of the input sinusoid, but with a modified gain with respect 
to the previous case. Comparing this situation with the ideal one we have an 
attenuation of the signal, and so of the S/N of a value 𝑐𝑜𝑠[𝜑<]. 
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    CHAPTER     18 

Real Lock-In Amplifiers 
In this chapter, we will make the transition from ideal to real LIA introducing the 
problems, trade-offs, and discussing solutions to improve the measurement with this 
approach.  We will study some important cases of LIA operating with square wave 
reference and sinusoidal or square-wave modulation signal, and then we will 
compare the results and show all their pros and cons. 
 
18.1 Introduction 
In the previous chapter we introduced the Lock-In Amplifier, showing that it is 
theoretically a simple and very effective solution to extract very small signals 
potentially buried into very large low-frequency noise. The idea was to modulate 
the signal at frequencies where the contribution of low-frequency noise like 1/f is 
negligible. In some cases, we have to handle the modulation, while in some other 
cases the signal is already modulated. If the reference signal is available, it is 
possible to make the multiplication of the signal with the reference, and then use a 
low-pass filter to extract the amplitude of the non-modulated signal. 
 

 
Figure 18.1: LIA with sinusoidal signal and sinusoidal reference employing an analog multiplier. 
 
We saw that by multiplying two sinusoidal signals, one at frequency 𝜔)	and the 
other at frequency 𝜔%, from the trigonometry formulas, we obtain a frequency 
component at the difference 𝜔) −𝜔% and one at the sum 𝜔) +𝜔%	. 
 

𝐴𝑐𝑜𝑠(𝜔)𝑡) ∙ 𝐵𝑐𝑜𝑠(𝜔%𝑡) =
1
2𝐴𝐵𝑐𝑜𝑠((𝜔) −𝜔%)𝑡) +

1
2𝐴𝐵𝑐𝑜𝑠((𝜔) +𝜔%)𝑡) 

      

and so, with  	𝜔) = 𝜔% = 𝜔<: 
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  𝐴𝑐𝑜𝑠(𝜔)𝑡) ∙ 𝐵𝑐𝑜𝑠(𝜔%𝑡) = 	

)
%
𝐴𝐵𝑐𝑜𝑠(0) + )

%
𝐴𝐵𝑐𝑜𝑠(2𝜔𝑡) 

      

We obtain a DC component and a component at high frequency. The purpose of the 
LPF is to cut the high frequency component and to have at the output just the 
amplitude of the signal. This is the concept of the Lock-In amplifier.  
 
18.2 From principles to real LIA instruments  
To understand all the problems and trade-offs of a real LIA we will do a step-by-
step analysis. The modulated input signal is converted by the LIA in a slow 
demodulated signal, with components from DC to a fairly low frequency limit. This 
signal must be supplied to a meter circuit that measures its amplitude, i.e. nowadays 
ordinarily an ADC. The LIA output signal must have scale adequate for the ADC, 
whereas the LIA input signal is very small: therefore, the LIA must provide high 
overall gain for the signal. 
The idea is to introduce a post-amplifier to increase the signal amplitude just after the 
LPF. The gain of the post-amplifier doesn't change the SNR because both signal and 
noise are amplified by the same amount. The bandwidth of the post-amplifier has to 
be small because the signal at the output of the LPF is DC (normally we don't have a 
DC signal but a signal slowly varying in time). The real problem is that the post-
amplifier introduces low-frequency noise like 1/f noise or drift of the baseline, that 
is acting directly on our low-frequency signal since it is not filtered by the LIA. One 
might think that having a high SNR, there is some margin for the added noise. This 
is not the case because we should not forget that beside having a high SNR, the signal 
amplitude is very small. So even a small noise introduced by the post-amplifier 
deteriorates the SNR.  
If the demodulated signal is very small, comparable or lower than the baseline drift 
and noise of the post-amplifier referred to its input, the measurement will be spoiled. 
The idea is so to increase the signal at previous stages by a pre-amplifier, so the noise 
introduced by the post-amplifier has less effect. The pre-amplifier is placed at the 
signal channel, and it obviously acts both on the signal and on the noise. It processes 
the modulated input signals, hence it is an AC coupled amplifier, either wide-band 
type including the modulation frequency fm or narrow-band tuned to fm, and it receives 
a signal accompanied by high noise, because it operates before the LIA. Differently 
from the post-amplifier it may have baseline drift and low-frequency noise, but their 
role is minor because they are filtered by the LIA (and by the AC-coupled amplifier 
itself). 
It is important to point out an important constraint: in order to obtain the foreseen 
improvement of S/N, the processing of signal and noise in the LIA must be accurately 
linear. Deviations from linearity produce detrimental effects (self-modulation of the 
noise, generation of spurious harmonics, etc.), which irrevocably alter the measure 
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and degrade the LIA performance, as we saw in the previous chapter. The signal and 
noise must remain well within the linear dynamic range in every stage involved, 
particularly in the multiplier (and in the preamplifier).  
When a wide-band preamplifier is employed to raise the level of a very small input 
signal, a problem arises with very small input S/N<<1. The gain required for the 
signal also amplifies a noise which is much higher than the signal, hence it brings 
this amplified noise out of the linear dynamic range of the multiplier.  
In such cases, for exploiting the required gain it is necessary to reduce the noise 
received by the preamplifier with a pre-filter. Adequate reduction of the LIA input 
noise is obtained in many cases with prefilter passband much wider than that of the 
LIA.  
Such a prefiltering would be a useless nonsense in an ideal apparatus, but in real cases 
it is a necessary feature for avoiding nonlinearity in intermediate stages.   
Preamplifiers that incorporate prefiltering are currently available from LIA 
manufacturers; they are called tuned preamplifiers or selective preamplifiers. 
 
18.3 Lock-in Amplifier with Square-wave Reference 
In order to limit some of the overmentioned problem we could remove the analog 
multiplier replacing it with just switches and amplifiers implementing a modulation 
with square wave reference m(t). 
The noise referred to the input, the linearity and the dynamic range of these circuits 
are remarkably better than those of analog multiplier circuits (even high-
performance types) because they are limited just by the performance of amplifiers 
and switch-devices. 
Therefore, switched linear circuit configurations are often employed as 
demodulator stage in LIAs in order to avoid the limitations of analog multipliers.  
 

 
 
Figure 18.2: LIA with switch-based multiplier. 
 
 

The weighting function wL(α) of a LIA is the multiplication of reference waveform 
m(α) (periodic at frequency fm ) and weighting function wF(α)  of the LPF 
 

𝑤�(𝛼) = 𝑚(𝛼) ∙ 𝑤{(𝛼) 
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In frequency domain this corresponds to the convolution of the F-transforms 
 

𝑊�(𝑓) = 𝑀(𝑓) ∗ 𝑊{(𝑓) 
 
Since the transform M(f) of a periodic m(α) is composed by lines at fm (fundamental)  
and integer multiple frequencies (harmonics), and WF(f) of the LPF has bandwidth 
much smaller than fm, the result of the convolution of WF(f) by any line of M(f) does 
not overlap the result by any other line (with very good approximation).  
We conclude that the WL(f) is a set of replicas of WF(f) centered on each line of M(f), 
multiplied by the line-weight and phase-shifted by the line-phase. So, with very 
good approximation, the module diagram can thus be obtained simply as 
 

𝑊�(𝑓) ≅ |𝑀(𝑓)| ∗ |𝑊{(𝑓)| 
 

 
Figure 18.3: Square wave signal with zero mean value and module of the square wave spectrum. 
 
With 
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Having a perfectly symmetrical square wave reference the DC component is 
completely removed, but this is an ideal case. In real cases, it might happen that the 
square wave value is not perfectly symmetrical, and so a DC component is still 
present. During the implementation of the switch driver, for example, we might have 
some error in the duty-cycle so the negative and positive area might not be exactly 
the same. But this small DC value is very problematic since it opens a window in 
frequency where high 1/f noise is collected. 
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Figure 18.4: LIA weighting function with spurious band at f=0. 
 
18.4 Sinusoidal signal through LIA with square wave reference 
Let’s apply now our square wave reference to the signal. The effect of the square 
wave reference with the same frequency and phase on the sinusoidal signal, is the 
full sinewave rectification. The amplitude of the rectified signal is the product of the 
amplitude of the sinusoid and the reference. Then this rectified signal passes through 
the low-pass filter which does the average in time. 
Calculation of the average value of the full-rectified sinewave 
 

𝑦(𝑡) =
1
𝜋& 𝐴𝐵𝑠𝑖𝑛(𝑡)𝑑𝑡 =

&

.

1
𝜋 𝐴𝐵

[−𝑐𝑜𝑠(𝑡)].& =
2
𝜋𝐴𝐵 

 

 
 

 
Figure 18.5: Input signal and LIA weighting function in frequency domain. 
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In frequency domain, it is immediate to obtain the output signal, it is obtained by 
calculating the area of the product between the F-transform of the sinusoidal and the 
square wave. The two deltas at ±𝑓< of the sinusoidal multiply with the value in ±𝑓< 
of the squarewave spectrum. Evidently: 
 

   𝑠8(𝑡) = 2 ∙ |
%
∙ %
&
∙ 𝐵 = %

&
𝐴𝐵 

 

What we notice in the case of sinusoidal signal and square wave reference, is the fact 
that the additional windows of the reference don’t collect useful signal, but they 
collect noise.  
 
18.5 Noise through LIA with perfect Square wave Reference 
To compute the noise contribution, we make the integral of the product of the noise 
spectral density with the module-square of the weighting function. 
 
   𝑛8�%ggggg = ∫ 𝑆6H(𝑓) ∙ |𝑊�(𝑓)|%

"
#" 𝑑𝑓  

 

Figure 18.6: Every window of the weighting function in frequency domain collects the input white noise 
with the proper amplitude. 
 
Every window collects white noise, giving the proper amplitude. The sum of each 
contribution gives the total noise power 
 

𝑛8�%ggggg = 2 ∙ 𝑆9H ∙ ∆𝑓6 ∙ (
2
𝜋 𝐵)

% ∙ [1 +
1
3% +

1
5%+. . . ] 

 

where ∆𝑓 is the window equivalent bandwidth. We can then calculate the enhanced 
noise due also to the higher passbands at the harmonic frequencies 

 

[1 +
1
3% +

1
5%+. . . ] = 	

𝜋%

8 ≅ (1,11)% 
 

Using this calculation, we obtain 
 

𝑛8�%ggggg = 2 ∙ 𝑆9H ∙ ∆𝑓6 ∙ (
2
𝜋 𝐵)

% ∙
𝜋%

8 = 𝐵% ∙ 𝑆9H ∙ ∆𝑓6 
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So, we can calculate the signal to noise ratio 
 

§
𝑆
𝑁©O=6#O¡V

=
𝑠8

X𝑛8�%ggggg
=

𝐴
𝜋
2 Á𝑆9H∆𝑓6

 

 
which in comparison to the result obtained with sinusoidal reference 
 

§
𝑆
𝑁©O=6#O=6

=
𝑠8

X𝑛8�%ggggg
=

𝐴
Á2𝑆9H∆𝑓6

 

 
Therefore, the S/N is reduced with respect to the case of sinusoidal reference, but the 
reduction is moderate. 

 
18.6 Square wave signal through LIA with square wave 
reference 
Another case which is often met in real life is to have a square wave signal at the 
input of the LIA. The sinusoidal modulation, in general, could be not easy to be 
implemented. A simpler way is to use a square wave to modulate the sensor and then 
use a square wave as a reference.  
Let’s see how the Lock-In Amplifier performs in the case of square wave signal with 
square wave reference with the same frequency and phase 
The output signal is then 
 

𝑠>(𝑡) = 9 𝑋(𝑓)𝑊(−𝑓)𝑑𝑓 = 2 f
2
𝜋𝐴

2
𝜋𝐵h f1 +

1
3) +

1
5) +⋯h

1

/1
≅ 2 f

2
𝜋𝐴

2
𝜋𝐵h

𝜋)

8 = 𝐴𝐵 

 
That is easily verified in time, the output is 𝐴 ∙ 𝐵 when the carrier is positive and 
(−𝐴) ∙ (−𝐵) when the reference is negative. 
 
The noise is the same we calculated in the previous paragraph since it does not depend 
on the signal. 
So, we obtain the signal to noise ratio 
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Figure 18.7: Input signal and LIA weighting function with square wave reference and signal 
 
However, for equal amplitude A the square wave signal has double power and 
correspondingly higher S/N compared to the sinusoidal modulation. 
In the table 18.8 we can compare the different combinations of modulated signal 
and reference. 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
     
Table 18.8: Summary of different cases for reference and signal modulation 
 
 
  



 

 

   CHAPTER     19 

Photodetector 
Fundamentals 
Photodetectors are pervasively invading our everyday life: they allow the 
measurement of optical signals that are very useful in many fields, from consumer 
to transport and industrial fields just to name a few. This chapter introduces some 
types of existing sensors, their working principle, their applications and it provides 
technical details on vacuum tubes. 
 
19.1 Introduction 
In the field of signal theory and detection, an important class of devices is represented 
by photodetectors. These devices essentially deal with detecting electromagnetic 
radiation and converting its characteristics into a measurable electrical signal. This is 
possible through a series of physical mechanisms that we will analyze in detail, but, 
first of all, it is necessary a general treatment of the electromagnetic radiation 
mediating particle: the photon. 
 
19.2 Photon  
The photon is an elementary particle mediating one of the 4 fundamental interactions: 
electromagnetism. It belongs to the group of bosons, that is the class of particles that 
obey the Bose-Einstein statistics (whole spin particles). 
The photon has mass and charge equal to zero and presents both undulating and 
corpuscular behaviors, a phenomenon called "wave-particle duality" (observable also 
for electrons). In vacuum, the photon travels at the speed of light, equal to: 
 

𝑐. = 299.792	 ×	10� 	
𝑚
𝑠  

 

and it has unlimited range of action. This means that it can travel indefinitely until it 
is absorbed (which is why it is still possible to detect the photons emitted during the 
Big Bang, what is called background fossil radiation). Since photons exhibit a wave 
behavior, it is possible to define a wavelength λ and a frequency ν and the two are 
linked by the relation:	 
 

𝑐 = 𝜆𝜐 
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Where c is the speed of light in a generic medium equal to 𝑐 = �G
6

  (n refractive index). 
The set of radiation of the various photons at different wavelengths constitutes the 
electromagnetic spectrum, which contains the visible spectrum (what we simply call 
light). 
The wavelength of "visible" photons extends from about 390nm up to 700nm, from 
violet to red (in terms of frequency from 770THz to 430THz). 
 

Range (wavelength) Region 
λ <400nm Ultraviolet 

400nm<λ<750nm Visible 
750nm<λ<3000nm Near infrared (NIR) 

3000nm<λ<30000nm Mid infrared (MIR) 
30000<λ Far infrared (FIR) 

 
 

 

Figure 19.1: Electromagnetic spectrum: it’s clear that the visible part of the spectrum is only a small 
portion of the whole spectrum. 

 
Moreover, photons carry energy equal to: 
 

𝐸 = ℎ𝜐    [J] 
 

Where h is the Planck constant:  ℎ = 7,6 ×	10#Pb𝐽 ∙ 𝑠 
 

It is precisely this energy that causes the interaction of photons with matter. 
We can express this energy in electronvolt (eV) instead of Joule, a more versatile 
unit of measure for a discussion in the field of electronic devices (the semiconductor 
gaps are of the order of some eV that is why it is convenient to use this unit of 
measurement). 
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So, we can divide this energy, expressed in Joule, by the value of the charge of an 
electron obtaining: 

 

𝐸 =
ℎ𝜈
𝑞 = 	

ℎ𝑐
𝑞𝜆										

[𝑒𝑉] 

 
And finally, in  a more easy to remember formula: 
 

		𝑉/ =
ℎ𝑐
𝑞𝜆 =

1,24𝜇𝑚
𝜆 							[𝑒𝑉]		 

 
From which we can derive: 
 
400nm < λ <750nm   visible range                 →    3,10eV > Vp > 1,65eV  
750nm < λ < 3μm      near infrared range       →    1,65eV > Vp > 0,41eV 
 
 
19.3 Reflection of photons at interface 
At this point, we have in mind the basic concepts regarding photons and their 
interaction with matter; now we can discuss in details phenomena that occur when 
radiation hits a surface (which could be the surface of a photodetector). For a simple 
analysis, we will consider a normal-incident beam hitting the surface; this simple 
approach still preserves the general value of the concepts here addressed.  
The aforementioned refractive index of a material is defined as follow: 
 

𝑛 =
𝑐.
𝑣 =

1
Á𝜀.𝜇.
1

Á𝜀.𝜀2𝜇.

= Á𝜀2 

 
where 𝑐. is the speed of light in vacuum and 𝑣 is the phase velocity of light in the 
medium. 
The refractive index describes how fast light propagates in a certain material; it is 
referred to the speed of light in vacuum: for example, the refractive index of water is 
1.333, meaning that light travels 1.333 times faster in vacuum than in water.  
This index is very important because it allows us to define what happens to the 
radiation when it approaches a discontinuity (i.e. the interface between two different 
media). In particular, given two materials and a certain incident optical power it’s 
possible to demonstrate that the fraction of reflected power is equal to: 
 

𝑅 = §
𝑛) − 𝑛%
𝑛) + 𝑛%

©
%
=
𝑃2�'���(�K
𝑃=6�=K�6(
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Where 𝑛)is the refractive index of the material where the light is travelling and 𝑛%is 
the one of the material that the light finds on its path. For Silicon n≈3.4: with a direct 
interface with air (n≈1), we have a reflection coefficient R≈0.3. It has to be said that 
n is actually a function of the wavelength. 
It’s clear that the reflection of light due to the interface between two different 
materials is a big issue in many applications where we want to detect as much light, 
and so as much signal, as possible, so we need to avoid any loss.  
From the conservation of energy, we can compute the fraction of light that is 
transmitted in the second material, which is equal to: 
 

𝑇 = 1 − 𝑅 =
𝑃(.
𝑃=

 

 

 
Figure 19.2 overall situation of a wave that meet an interface: 
 
Later in this chapter, we will discuss a possible solution to reflection issues. 
 
19.4 Photon absorption in materials 
After discussing what happens when the light faces a discontinuity of materials on 
its path, we will now analyze what happens when the radiation travels through a 
medium. Absorption can occur when a photon interacts with the matter of the 
medium it is travelling in; the interaction depends on both the characteristics of the 
material that composes the medium and the photon wavelength.  
Let’s consider a flux of photons sent through an absorbing medium; when photons 
are absorbed, the amount of power travelling is reduced. We can write that the 
variation of travelling power (and so the absorbed power) is proportional to the 
travelled depth: 
 

∆𝑃
𝑃 ∝ ∆𝑥 

 
It’s intuitive that the more the light travels in deep in the material, the more photons 
are absorbed. Ideally, with a medium of infinite thickness, all photons would be 
absorbed. 
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We can now introduce a factor α as proportionality coefficient (optical absorption 
coefficient); we also introduce a minus sign in the equation because we understood 
that the travelling power decreases as the travelled path increases: 
 

∆𝑃
𝑃 = −𝛼∆𝑥	 ⇒ 	

∆𝑃
∆𝑥 = 	−𝛼𝑃 

 

𝑝𝑎𝑠𝑠𝑖𝑛𝑔	𝑡𝑜	𝑡ℎ𝑒	𝑙𝑖𝑚𝑖𝑡		 ⇒ 				
𝑑𝑃
𝑑𝑥 = −𝛼𝑃 

 
And solving this simple differential equation we get: 
 

𝑃((𝑥) = 𝑃(.𝑒#d, = 𝑃(.𝑒
# ,
�/ 

	 
Where 𝑃(. is the optical power actually transmitted in the material right after 
overcoming the interface and 𝐿` is the optical absorption depth.  
This equation allows us to compute how much remaining power is travelling through 
the medium at a certain distance x from the surface. We can derive how much power 
is absorbed by the medium from 0 (interface) to x: 
 

𝑃 (𝑥) = 𝑃(. − 𝑃((𝑥) = 𝑃(.(1 − 𝑒#d,) = 𝑃(.(1 − 𝑒
# ,
�/) 

 
The results are summarized in the following plot: 
 

 
Figure 19.3 absorbed and transmitted power 
 
We have to underline that the optical absorption of materials strongly depends on the 
wavelength of the radiation. To have an idea, in Silicon we have that the absorption 
depth at λ=400nm (violet) is ≈100nm, at λ=800nm (red) is ≈10μm, as can be seen in 
the following plots. 
This means that after 5μm, red light is attenuated less than half (60% is still there) 
while the violet one is attenuated by a factor 1200 (just 0.079% of the incoming violet 
light is still travelling, it was almost all absorbed!). 
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Figure 19.4: Absorption coefficient of intrinsic silicon   
 
 

 
Figure 19.5: Absorption depth in silicon 
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19.5 Thermal Photodetector Principles 
One of the physical principles that can be used to detect light signals is the heating 
of a medium caused by the absorption of optical power. This approach relies on the 
measurement of the relative ΔT temperature variation (in a direct or indirect 
way).  Sensors that exploit this principle are called "thermal sensors”. One of the 
advantages of these sensors is that they are sensitive to a very wide light spectrum 
since it is enough that the photon is absorbed to be detected. Unfortunately, these 
sensors have a very low sensitivity: to have a significant ΔT it is necessary that many 
photons are absorbed; for example, if we want to increase the temperature of a ΔT = 
0.1K of a drop of water of 1mm, we need 1015 photons with a wavelength λ = 475nm 
(light blue). Moreover, the dynamic behavior of these sensors is inherently slow: they 
require a long time interval to go from 10% to 90% of the final value; therefore, 
thermal photodetectors are used for stationary light radiation measurements.  
 

 
Figure 19.6: Conceptual scheme of a thermal photosensor 
 
Regardless of the physical principle that is used to transform the ΔT of the 
temperature sensor into an electrical signal, it is possible to create a model for the 
behavior of any thermal photosensor. The conceptual scheme, shown in the figure 
19.6, consists of a thin absorber layer (black body) that is hit by light radiation; the 
absorbed power leads to an overall increase in temperature of the absorber, which 
features a specific heat capacity ca and a mass ma; the absorber heats the substrate 
with respect to the reference temperature T0  of the thermal reservoir, to which it is 
linked by a thermal resistance RT. ΔT is converted into a proportional electrical signal 
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by means of a temperature sensor; it may be useful to find the transfer function 
between the optical power PP and the temperature variation of the sensor ΔT.  
We can define the optical power as the number of photons that arrive in one second np 
and the energy carried by each photon Ep 

 
𝑃/ = 𝑛/ ∙ 𝐸/ = 𝑛/ ∙ 𝑞𝑉/		 

 
At the same way we can define the substrate heat capacity Ca as the ratio between 
the heat  ΔQ added to (or removed from) the thermal reservoir and the 
resulting temperature change ∆𝑇  
 

𝐶` = 𝑐` ∙ 𝑚` =
∆𝑄
∆𝑇 

 

The thermal resistance quantifies how much an object or material resists a heat flow.  
It is defined as the ratio between the temperature variation and the absorbed power: 
 

𝑅- =
∆-
3K

  
 

Using the principle of conservation of energy, it is possible to define an energy 
balance equation; the optical energy must be equal to the sum of the energy 
accumulated in the substrate and the exchanged energy of the resistance with the 
thermal reservoir. 
 

𝑃/ ∙ 𝑑𝑡 =
∆𝑇
𝑅-

𝑑𝑡 + 𝐶`𝑑(∆𝑇) 

 
𝑑(∆𝑇)
𝑑𝑡 =

𝑃/
𝐶`
−

∆𝑇
𝑅-𝐶`

 

 
Going into the Laplace domain and remembering that the time signals are ΔT and Pp, 
we obtain: 
 

𝑠∆𝑇 =
𝑃3
𝐶`
−

∆𝑇
𝑅-𝐶`

; 						→ 		 ∆𝑇 = 𝑃/𝑅-
1

1 + 𝑠𝑅-𝐶`
 

 
The dynamic response is a single-pole low-pass filter with characteristic time 
constant 𝜏` = 𝑅-𝐶`	𝑎𝑛𝑑	𝑓( =

)
%&\#]/

		, whose bandlimit decreases with RT. That 
highlights how the response (ΔT) of the system to an input (Pp) is intrinsically slow. 
The steady state response (∆𝑇 = 𝑃/𝑅- obtained with 𝑠 = 0 ) increases as the thermal 
resistance RT is increased. 
It is useful to find an electrical equivalent to the above model, in which the substrate, 
with a thermal capacity Ca, is replaced by an electrical capacity in parallel with a 
resistance RT, that models the thermal resistance, linking the thermal reservoir (the 
electrical ground) and the substrate. The optical input power can be seen as a current 
generator. Between gain and band of the system there is therefore an opposite 



Photodetectors fundamentals 

 241 

dependence on RT. To overcome this problem, you can act on the substrate, choosing 
one with a smaller ca, or reducing the mass ma, that is using smaller devices.  
 

 
Figure 19.7: Equivalent electrical circuit for a generic thermal photosensor 
 
Thermal detectors typically transduce the optical power PP in an electrical output 
signal VD of the temperature. 
The basic quantitative characterization of the performance of a photodetector is given 
by the “Radiant Sensitivity” (also called Spectral Responsivity) SD, defined as:  
 

𝑆r =
𝑜𝑢𝑡𝑝𝑢𝑡	𝑣𝑜𝑙𝑡𝑎𝑔𝑒	[𝑉𝑜𝑙𝑡]

𝑜𝑝𝑡𝑖𝑐𝑎𝑙	𝑝𝑜𝑤𝑒𝑟	𝑜𝑛	𝑡ℎ𝑒	𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟	𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒	𝑎𝑟𝑒𝑎	[𝑊𝑎𝑡𝑡] 

 
For a given optical power absorbed by the detector, the temperature variation does 
not depend on the wavelength of the radiation λ. Therefore, uniform SD would be 
obtained at all λ if the reflection and absorption were constant, independent of λ. 
Obviously, λ influences the amount of radiation absorbed and reflected by the active 
layer. The variations in absorption and reflection as a function of λ are kept at 
moderate levels thanks to continuous research in this sector, achieving a fairly 
uniform SD over fairly wide wavelength ranges, extended well into the infrared 
spectral region.  
 
19.6 Quantum Photodetector Principles 
A completely different principle for detecting an electromagnetic signal exploits 
photoelectric effects to directly generate a current inside the sensor. The energy of 
the absorbed photons is used to generate carriers inside the device, thus obtaining a 
current variation. Sensors that exploit this principle are called Quantum 
Photodetectors or Photon Detectors and can be vacuum tubes or semiconductor 
devices. The basic quantitative characterization of the performance of quantum 
photodetectors is given by the Quantum Detection Efficiency (or Photon Detection 
Efficiency) ηD defined as 
 

𝜂r =
number	of	photogenerated	electrons

number	of	photons	reaching	the	detector =
𝑁�
𝑁/

 

 
We have also seen that a figure of merit of the performance of any kind of 
photodetector is the Radiant Sensitivity SD, that allows us to compare very different 
kinds of photodetectors. In this case SD is equal to: 
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𝑆r =
electrical	output	current	[Ampere]

optical	power	on	the	detector	sensitive	area	[Watt] =
𝐼r
𝑃�

 

 
It is easy to find a link between these two quantities. Photons of wavelength λ, 
arriving with a rate np, have an optical power PL 
 

𝑃� = 𝑛/ ∙ ℎ𝜐 
 
While the electrons (or electrons-holes pairs) photogenerated in the detector with a 
rate ne produce a current 
 

𝐼r = 𝑞 ∙ 𝑛�  

 

So, the Radiant Sensitivity is 
 

𝑆r =
𝐼r
𝑃�
=
𝑛�
𝑛/
∙
𝑞
ℎ𝜐 =

𝑛�
𝑛/
∙
𝑞 ∙ 𝜆
ℎ𝑐  

 
And since the ratio between the number of carriers photogenerated in one second and 
the number of photons collected by the detector in one second is ηD, we can write 
 

𝑆r = 𝜂r ∙
𝑞 ∙ 𝜆
ℎ𝑐 = 𝜂r ∙

𝜆[𝑖𝑛	𝜇𝑚]
1.24  

 
We see that the Radiant Sensitivity of a quantum detectors intrinsically depends on 
the wavelength λ, even with constant quantum efficiency ηD. This occurs because a 
given optical power PL corresponds to a different photon rate np at different 
wavelengths λ. 
 
19.7 Photo-Tubes 
In vacuum tubes, the photoelectric effect is used to emit an electron, also called 
photoelectron, from a metal or a semiconductor. We have seen that photons have an 
energy depending on the frequency of light 𝐸 = ℎυ; if the energy of the photon is 
equal or greater than the energy necessary to promote an electron either from the 
conduction band (in the case of metals) or from the band of valence (in the case of 
semiconductors) to the free electron level, the carrier will no longer be subject to the 
electrical potential of the material that emitted it. In a vacuum tube, an electrode 
(cathode K), enclosed in a vacuum cell, absorbs the incident photons, which increase 
the kinetic energy of the electrons.  Once they diffused towards the surface of the 
cathode, they are emitted into the vacuum. The generated carriers are accelerated 
towards the other electrode (the anode) placed at a greater potential; in this way a 
current signal is obtained between cathode and anode proportional to the number of 
absorbed photons. If no amplification effects are present, currents of a few 
microamperes are obtained.  
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Figure 19.8: Working principle of a Photo tube  
 
A cesium-antimony cathode is very sensitive to the region of violet and ultraviolet. 
Cesium with oxidized silver provides a cathode that is more sensitive, instead, to 
infrared and red light. The frequency response is generally limited by the transit time 
of the electrons from the cathode to the anode.  
 
19.8 Photo-Diodes 
Nowadays photodiodes are the most common type of photosensors. 
 

 
Figure 19.9: Working principle of a Photodiode  
 
In this case, any photon impinging on a reverse-biased p-n junction diode can 
promote an electron from valence to conduction band of the semiconductor, 
generating a free electron-hole pair. The free carriers generated in the depletion layer 
are drawn by the junction electric field, obtaining a current signal proportional to the 
number of photons absorbed in depletion region. Even without any light hitting the 
device, a finite current flows in a reverse-biased p-n junction. It is called Dark 
Current in photodiodes and reverse current in ordinary diodes and it is due to 
spontaneous generation of free carriers in the depletion region due to thermal effects. 
Semiconductor photodiodes internal noise is typically negligible compared to the 
circuit noise, but much higher than noise in vacuum phototubes.  This fact has 
significantly limited the size of the active of semiconductor detectors for very low-
noise operation; unfortunately, the lower the area, the lower the number of collected 
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photons. In other words, Vacuum tube sensors can be employed for operating at low 
noise levels without tight limitations to the sensitive area: this is a clear advantage 
over semiconductor photodiodes.  
 
19.9 Photon shot noise 
As we have seen, optical radiation is composed of quantum particles called photons, 
which can only be detected in whole numbers. This discretization phenomenon 
implies that a set of repeated collections of photons will surely suffer from random 
fluctuations in the number of detected photons. This means that in every 
photodetector there will be a shot noise independent from the technology. In most 
cases photon noise can be properly modelled using Poisson statistics, having a 
variance equal to:  
 

𝜎/%= 𝑁/gggg 
 

where 𝑁/gggg is the average number of particles that hit the target. Since each photon has 
energy hν, the total optical power arriving at the detector is 𝑃/=𝑛/ℎ𝜈, being 𝑛/ the 
arrival rate of the photons. Therefore, the power spectral density of the noise will be:  
 

𝑆/ = 2hν𝑃/ = 2D�
¢

 𝑃/ 
 

In the previous expression an analogy with the electrical shot noise can be easily 
observed, being 𝑆q = 2𝑞𝐼� the power spectral density of electrical shot noise. 
Electrical shot noise, as is well known, comes from the fluctuations of the number of 
electrons that trespass a potential barrier (i.e. a p-n junction), so it is a consequence 
of the discretization of the charge. However, photons have a further degree of 
freedom with respect to electrons, since 𝑆/ depends both on the number of particles 
and on the energy of the particle itself, while 𝑆q depends only the current, so on the 
number of electrons. 
 
19.10 Shockley-Ramo theorem 
The main working principle behind all photodetectors relies in the generation of free 
carriers once the electromagnetic radiation interacts with the sensitive part of the 
detector. Under the effect of an electric field, kept by means of an external power 
supply, the charge moves towards the electrodes of the device, inducing a charge of 
opposite sign on the electrodes themselves. As the charge between the electrodes 
moves, the induced charge changes and, if the electrodes are part of a closed form 
circuit, this variation translates into a current signal. Hence the main issue is the 
calculation of the induced charge, which can be very difficult if a purely 
electromagnetic point of view is used. In fact, to calculate the charge we would need 
to compute several electric fields, each corresponding to a different position of the 
external charge, through the application of Gauss’ law. However, there is a way more 
convenient method to get to the same result without involving too complex 
electromagnetics calculations: the Shockley-Ramo theorem. This method was 
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independently developed by William Shockley and Simon Ramo in the late 1930s 
specifically for vacuum tubes, but it is valid in general for any kind of detector. In 
short, the Shockley-Ramo theorem states that the current	𝑖� on a selected electrode 
induced by a moving charge q is given by: 

 
𝑖� = 𝑞𝐸E●𝑣� 

 
Where ● stands for scalar product, 𝑣� is the velocity of the free carrier moving toward 
the electrode and 𝐸E is called weighting electric field. This last element is crucial to 
understand how the theorem works: 𝐸E is the field that would exist at the position of 
the charge if the following conditions were verified: the selected electrode is at 
unitary potential, all other electrodes are grounded, all external charges are removed. 
Therefore, the weighting field does not correspond to the actual electric field, which 
is instead hidden in the velocity of the carrier, since drift velocity is usually dependent 
on it.  
 
19.11 Application of the theorem: Vacuum Phototube 
 

 
Figure 19.10: Polarization of a Phototube with planar geometry 
 
To illustrate how the theorem can be practically used, a vacuum phototube with 
planar geometry, shown in figure 19.10, is considered. Our goal is to calculate the 
single electron response (SER) using the Shockley-Ramo theorem. Since the bias 
generator keeps the voltage between the two electrodes constant, there will be a 
forcing electric field of value 𝐸K =

�;
V/	
	between the two conductors. Knowing both 

the charge of the carrier and the electric field, we can compute the acceleration of the 
particle, starting from the electrostatic force to which the electron is subject: 
 

𝑞𝐸K = 𝐹																	𝑎� =
𝐹
𝑚�

= 𝑞
𝐸K
𝑚�

= 𝑞
𝑉|
𝑤`	

 
 

Knowing the acceleration, the velocity of the carrier can be derived by simply 
integrating 𝑎� over time: 

𝑣�(𝑡) = &𝑎� 𝑑𝑡 = 𝑞
𝐸K
𝑚�

𝑡 + 𝑣. 
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𝑣. is the initial velocity of the carrier, which can be reasonably considered null. Let 
us summarize the results obtained up until now. The following graphs show 
respectively 𝐸K(𝑥), 𝑉|(𝑥) and 𝑣�(𝑡): 
 
 

 
Figure 19.11: Electric field 𝐸*, Voltage in the vacuum tube 𝑉-, velocity of the carrier 𝑣. 
 
As we can see, the velocity of the carrier interrupts after a time interval 𝑡`. Although 
this last term does not appear explicitly in the formula of 𝑣�(𝑡), it will certainly 
correspond to the time at which the particle hits the anode (so it reaches 𝑥 = 𝑤`). 
The value of this time interval will be computed later, for now let us focus on the 
application of the theorem. In fact, once computed the velocity, the only element that 
is missing in order to correctly apply the Shockley-Ramo theorem is the weighting 
field; to calculate it we refer to the three conditions that were mentioned in the 
definition of the theorem. Hence, the free charge between the conductors must be 
removed, the electrode toward which the electron was moving has to be set at unitary 
potential (i.e. 1 Volt) and the other electrode at ground potential. Figure 19.12 shows 
how the system has been modified after the three conditions are applied: 
 

 
Figure 19.12: Vacuum tube without charge, with an electrode at unitary potential and the other grounded. 

 
Thanks to the particularly easy geometry taken into consideration the computation of 
the weighting field is immediate since once again inside the detector the electric field 
is unique and constant, and its value is: 
 

𝐸E =
1
𝑤`

 
 

Both 𝑣� and 𝐸E were computed in terms of absolute value instead of vectors; however, 
due to the planar shape of the detector, their directions coincide, so the scalar product 
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between the two reduces to the basic product of the absolute values (note that there 
would be a minus sign since the directions are opposite but it simplifies with the 
charge -q, which is negative for an electron). In the end, the current induced in the 
electrodes will be: 

𝑖�(𝑡) = 	𝑞𝐸E𝑣� =
𝑞%𝑉|
𝑚𝑤`%

	𝑡 

 
At first, we can observe that it increases linearly with time, as velocity does, so it is 
reasonable to think that the current pulse will have a triangular shape, since the 
velocity of the carrier abruptly interrupts once the electron reaches the anode. 
Therefore, the duration of the pulse coincides with the transit time of the electron 
between the two electrodes, which can be computed making simple cinematic 
considerations. We start from the expression of the travelled distance of the carrier, 
obtained by integrating velocity over time: 
 

𝑥(𝑡) = &𝑣(𝑡)𝑑𝑡 =𝑞
𝐸K
2𝑚�

𝑡% + 𝑥. 

 
In our reference system 𝑥. = 0. The transit time 𝑡` corresponds to the moment when 
the electron reaches the anode, so 𝑥(𝑡`) = 𝑤`, resulting: 
 

𝑞
𝐸K
2𝑚�

𝑡`% = 𝑤` 

Therefore, we get: 
 

𝑡` = À
2𝑚�𝑤`
𝑞𝐸K

= À2
𝑚
𝑞
𝑤`
Á𝑉|

 

 
Figure 19.13: The graph shows the form of the current pulse 

 
By the time we have a better idea on the shape of the SER, we can also make some 
considerations on the frequency response of our system. The high frequency cut-off 
of the detector is, as first approximation, inversely proportional to the duration 𝑡`. 
Since we want the system to respond as quickly as possible, we need to reduce  𝑡` at 
minimum. The parameters on which we can intervene to achieve this goal without 
changing the system are 𝑤` and 𝑉|. Typical values for these quantities are about 1cm 
for the phototube length and around 100V for the bias voltage, which lead to a transit 
time of approximately three nanoseconds, translating into frequencies of some 
hundreds MHz. We can’t keep increasing 𝑉| and reducing 𝑤` in order to increase the 
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frequency response, since not only it will lead to an increase of costs related to a more 
complex technology, but it would also produce very high levels of electric fields 
which can be difficult to handle. The following paragraph shows a clever method to 
increase the frequency response of the phototube without incurring in the drawbacks 
that were mentioned. 
 
19.12 Application of the theorem: Phototube with screened 
anode 
As explained in the introductory paragraph for the Shockley-Ramo theorem, an 
electrode instantly reacts to the presence of a moving charge, starting a pulse current 
signal that propagates in the rest of the circuit. However, as shown in the previous 
paragraph, the frequency response of a vacuum tube photodetector yet depends on 
the transit time of the electron between the two metal plates. Our goal is hence to 
decrease the transit time as much as possible without further increasing the electric 
field. To do so we modify the vacuum tube by simply inserting a metal wire grid in 
front of the anode, as shown in figure. 

 
Figure 19.14: Vacuum tube with screened anode 
 
The grid acts as a controller for the device; in fact, by modifying the voltage 𝑉e 
applied between the grid itself and the cathode, we can basically control the flow of 
electron inside the device. A very similar structure was developed in 1906 by Lee De 
Forest: the inventor of “Audion”, the first vacuum triode which was able to perform 
an amplification of a signal. In order to better understand the working principle of 
the structure, let us see how the circuit behaves when different voltages are applied 
to the grid. In the case 𝑉e < 0, the grid repulses the electrons coming from the 
cathode, thus some of them will not be able to reach the anode. Viceversa, if 𝑉e > 0, 
some of the electrons will be “captured” by the grid and yet they fail to reach the 
anode. This mechanism of modifying the number of electrons that reaches the anode 
obviously leads in change of current through the circuit and in particular it is used in 
triodes which basic functioning is the application of a signal to the grid itself that 
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translates into a large variation of current. However, for the purpose of 
photodetectors, the voltage of the grid has to be set at a particular value, the one for 
which it does not modify the overall electric field between the two electrodes. Taking 
figure 19.14 as a reference, we know that in the absence of the grid the electric field 
inside the device would be constant and equal to �;

V/	
, on the other hand the electric 

field between the cathode and the biased grid would be �3
V2

. Since we are willing to 

get the same electric field in the overall system, with both generators on, we must 
equate the two fields: 
 

�3
V2
= �;

V/	
  → 𝑉e = 𝑉|

V2
V/

 

 
From a graphic point of view, we can see that with this particular value for 𝑉e the 
shape of the overall potential across the two plates has not changed, as shows in the 
following graph: 
 

 
Figure 19.15: The shape of the overall potential across the two plates 
 
Since the electric field inside the detector has not changed with respect to the case 
shown in the previous paragraph, also the motion of the electron will remain 
unchanged. Therefore, let us recall the expression of the velocity of the electrons that 
we previously obtained: 
 

𝒗𝒄(𝑡) = 𝑞
𝐸K
𝑚�

𝑡𝑢, 

 
Where 𝐸K =

�3
V2
= �;

V/	
 is the unchanged electric field and 𝑢, is the unit vector of the 

x-axis.  Although everything seems to be the same as the previous case, the crucial 
difference is that, as we will show, the grid does not allow the traveling electron to 
induce a charge on the anode. Once again, the proposed one is a complex 
electromagnetic problem that would be very difficult to solve without the Shockley-
Ramo theorem. However, before applying the theorem, let us focus for a while on 
the physical situation we are handling. The electron traveling from 0 to 𝑤+ is certainly 
inducing a charge on the grid which compensate the effect of the electron. However, 
on the anode plate there cannot be any induced charge until the electron actually 
reaches the grid, otherwise the charge balance of the system could not be respected. 
Let us verify our assumption by computing the weighting field in the present 
situation, once again recalling the three conditions under which it has to be computed: 
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electron removed, anode raised at unitary potential and all other electrodes grounded. 
The following picture depicts the situation: 

 
Figure 19.16: Vacuum tube with screened anode in the hypothesis of the Ramo Theorem  
 
Since the cathode and the grid are in a short-circuit, the voltage drop between them 
has to be zero, so also the electric field is necessarily zero in that region. Between the 
anode and the grid instead there is a voltage drop of 1Volt, therefore the field, due to 
the geometry of the system, will be: 
 

𝐸𝒗 = Å
																		0																																												if	0 < 𝑥 < 𝑤+					

1
𝑤` −𝑤+

(−𝑢,)																				if	𝑤+ < 𝑥 < 𝑤`
 

 
Obviously, 𝑤` −𝑤+ is the distance between the anode and the grid, we can visualize 
the overall behaviour of the electric field in the following: 
 
 

 
Figure 19.17: Overall behaviour of the electric field in the device 
 
The field has a rectangular shape much thinner than in the case without the grid and 
its value is way larger than in the previous case. Since now we have all the ingredients 
that are needed to apply the Shockley-Ramo theorem; we can perform the scalar 
product between the velocity of the electron 𝑣� and the weighting field 𝐸E, once again 
noticing that they are both directed in the same way (the direction of the x-axis), so 
the scalar product reduces to the classical product of their absolute values except for 
a minus sign, which will be compensated by the fact that the electron has negative 
charge. In short, the SER current pulse is: 
 

𝑖�(𝑡) = 𝑞𝐸E𝑣�(𝑡) 
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Since the field has rectangular shape, smaller in width than the one of the triangular 
shape of the velocity, we expect the current to have a trapezoidal shape which width 
has to be smaller than the transit time of the electron inside the device (𝑡`). As we 
said before, the anode is able to notice the presence of the charge only when the 
electron reaches the grid: this happens after a time interval 𝑡+, which can be computed 
in a similar way of 𝑡` in the previous paragraph, thus resulting: 
 

𝑡+ = À
2𝑚�𝑤+
𝑞𝐸K

= À2
𝑚
𝑞
𝑤+
Á𝑉e

 

 
As the pulse starts in 𝑡+ and it lasts until 𝑡`, that is the time in which the electron hits 
the anode. Now that we have the overall picture of the situation, we can sketch the 
graph of the resulting current pulse as it follows: 
 

 
Figure 19.18: Difference between the current pulse in the case of screened anode and without the grid 

 
The duration of the pulse obtained in the new configuration is certainly shorter than 
the previous one; we can compute it by simply subtracting the two quantities: 
 
 

𝑡` − 𝑡+ = À2
𝑚
𝑞
𝑤`
Á𝑉|

−À2
𝑚
𝑞
𝑤+
Á𝑉e

= À2
𝑚
𝑞 ¼

𝑤`
Á𝑉|

−
𝑤+
Á𝑉e

½ 

 
But since 𝑉e = 𝑉|

V2
V/

: 
 

𝑡` − 𝑡+ = À2
𝑚
𝑞
⎝

⎛ 𝑤`
Á𝑉|

−
𝑤+

X𝑉|
𝑤+
𝑤`⎠

⎞ = À2
𝑚
𝑞
𝑤`
Á𝑉|

¼1 −
Á𝑤+
Á𝑤`

½ = 𝑡` ¼1 −
Á𝑤+
Á𝑤`

½ 

 
 
Since our initial goal was to increase the frequency response of the detector, we see 
that in order to have 𝑡` − 𝑡+ as short as possible we must put the grid as close as we 
can to the anode.  
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   CHAPTER   20 

Phototubes 
Phototubes are photodetectors that feature high sensitivity, superior temperature 
stability, wide dynamic range, large photosensitive area. They are widely used in 
applications such as chemical and medical analysis and laser measurement. 
 
 
20.1 Introduction 
Phototubes are high-sensitivity devices also known as photoemissive cells. They are 
one of the oldest and most elaborate ways to transduce light into electricity. They 
basically are vacuum or gas-filled tubes containing two opposite electrodes: a 
photocathode and an anode. Thanks to the photoelectric effect, incoming photons 
hitting the photocathode knock electrons out of its surface and they are attracted to 
the anode. Thus, current is dependent on the frequency and intensity of the incoming 
photons. Unlike photomultiplier tubes (as we will see in the next chapters), no 
amplification takes place, so the current through the device is typically in the order 
of few microamperes. The light wavelength range over which the device is sensitive 
depends on the material used for the cathode.  
Some basic features of the phototubes are of our interest: their high-speed response 
(as phototubes they have low capacities, so their rise-time characteristics are fast) and 
large photosensitive area compared to semiconductor sensors. 
 
20.2 Phototube Device Structure 
The structure of a phototube basically features an evacuated glass tube which 
contains two metal electrodes: a photosensitive cathode that emits electrons when 
illuminated and an anode for collecting the emitted electrons. The tube is connected 
to a power supply that controls the potential difference V between the two electrodes.  
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Figure 20.1:  Side Window Tube and End Window Tube 

Figure 20.1 shows the two main structures of a phototube: on the left, we have a 
photocathode made of a thick opaque layer deposited on a metal-support electrode, 
and a side window of the glass tube which allows the light to enter the device. This 
structure has an unfavorable geometry and the collection of light on the photocathode 
is uneasy and not very efficient. On the right-side of figure 20.1, we can see an end-
window tube: the photocathode is made of a thin transparent layer deposited on the 
interior of the glass-tube end. This structure has a favorable geometry and the 
collection of light is easy and efficient. 

20.3 Stationary I-V Characteristics  
A typical current-voltage characteristic for a phototube is shown in figure 20.2. 
 
 
 
 
 
 
 
 
 
 
Figure 20.2: I-V characteristics of phototube 

 
At low VAK voltage, the photocurrent collected at the anode side is limited by the 
electron space-charge effect. As VAK is increased, the higher electric field reduces the 
space charge and a higher number of emitted electrons is collected: as a consequence, 
the current increases. As VAK exceeds a saturation value VAKS, all photoelectrons are 
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collected, and the current is constant vs. VAK.  The saturation value VAKS increases 
with the optical power PL hitting the detector. Phototubes are typically operated 
biased in the current saturation region. 
 
20.4 Electron Photoemission and Photocathode technology  
As mentioned before, the working principle of phototubes is based on the 
photoelectric effect, i.e. the photocathode can emit electrons when photons strike the 
surface. The emitted electrons will travel across the evacuated tube and reach the 
other end, where they will be collected by the anode. 
Photoelectrons are emitted when a single photon (quanta) of energy hν is absorbed 
by the material, where h is Planck's constant and ν the frequency of the light used. 
The energy of the photon must be larger than the energy separation between the top 
of the valence band and the vacuum level. 
The design of photocathodes is based on the 3-step model. In this approximation, the 
photoelectron emission process is divided into three separate steps:  
  

1. Photon absorption: free electrons are generated by photon absorption.  
2. Transport of excited electrons to the surface; the electrons generated are 

diffused in photocathode layer. 
3. Passage through the surface and escape into the vacuum 

 

To maximize the total efficiency of the device, equal attention must be given to each 
one of these steps. The excited electrons may lose energy during transport to the 
surface and so their flux is attenuated. The attenuation is lower for materials where 
inelastic electron scattering is hindered, like insulators or wide band-gap 
semiconductors, that is why the most suitable materials are semiconductors. Metals 
are unsuitable due to their high reflectivity, small diffusion length and low escape 
probability (high potential step from inside up to the vacuum level). 
 
20.4.1 Ordinary Photocathodes with positive Ea 
We have different types of photocathodes and first of all we are going to consider the 
basic ones, usually referred to as ordinary photocathodes. Ordinary photocathodes 
are characterized by positive electron affinity (Ea). If the energy of the absorbed 
photon is larger than the energy separation between the top of the valence band and 
the vacuum level, electrons can escape into the vacuum level. Otherwise, if this 
energy is not enough, the electron does not escape and in a few ps it thermalizes down 
to the bottom of the conduction band. At the bottom of conduction band an electron 
can diffuse further a few μm and about 100ps before recombining (i.e. getting down 
to valence band) but it cannot escape any more into vacuum. 
A fundamental monitor of photocathode performance is the quantum detection 
efficiency (QE), which is defined as the percentage of ejected electrons per 
incoming photons. 
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Figure 20.3: Photo-emission on photocathodes with positive Ea 
 
In order to provide good quantum detection efficiency, the photocathode material 
must fulfill some basic requirements. 
 

1. The inside-to-vacuum energy barrier Eg	+	Ea must be smaller than the photon 
energy Ep. In the visible range 1,6	 eV	 <	 Ep<	 3,1	 eV and Eg	 ≈	 1eV for 
semiconductors; therefore, the electron affinity must be limited. 
 

𝐸` ≤ 1𝑒𝑉 
 

2. In general, there is always a tradeoff between the need to have a cathode 
material which strongly absorbs light, but sufficiently thin that electrons can 
be extracted. The light penetration in the cathode is strongly wavelength 
dependent. For short wavelengths in a multialkali cathode, for example, this 
is on the scale of 30nm for wavelengths below 400nm. 
Furthermore, electrons generated in deep layers are not emitted, since they are 
not able to reach the surface. Escape probability is high only for electrons 
generated in a surface layer that is very thin, about a diffusion length Leh of 
high-energy electrons. For a significant absorption in this layer, the optical 
penetration length La must be anyway NOT much higher than Leh . For a high 
absorption the two should be comparable with each other: 

 

𝐿` ≈ 𝐿�D 
 

In conclusion, the thickness of the photocathode layer contributing to the electron 
emission is intrinsically limited to about Leh in any case. That is, the active layer is 
very thin, independent from the total thickness of the photocathode. 
 
20.4.2 SemiTransparent Photocathodes    
The active layer of the previous photocathodes was always very thin, also for thick 
cathodes deposited on a metal electrode, because the thickness of the cathode layer 
contributing to the electron emission is limited. 
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Figure 20.4: Semi transparent and opaque photocathode 
 
Due to this fact, a new type of photocathode was developed. It is a thin photocathode 
(with thickness about ≈	Leh) deposited on the interior of the glass tube in the end-
window of the detector. They are called semitransparent cathodes.  
They are illuminated on the outer side through the glass window end emit 
photoelectrons from the inner side. They make it possible and easy to achieve a much 
better optical collection with respect to the side-window geometry. 
 
20.4.3 Photocathode Types 
The light wavelength range over which the phototube is sensitive depends on the 
material used for the cathode.  
Classifications of Photocathode types are made by industrial standard committees. 
Most widely used is that by JEDEC (Joint Electron Devices Engineering Council 
US), which denotes cathode types S1, S2, ... and classifies them by spectral 
responsivity type (rather than by chemical composition or fabrication recipe). 
Let’s see some key types: 
 

• S1 photocathode was introduced in the ’30s and it is still in use. The QE 
is low (peak  ηD≈ 1%) but it covers a wide spectrum in the IR. It is a matrix 
of Cesium oxide that includes silver microparticles and it’s currently 
denoted as Ag-O-Cs.  

 
Highly efficient photocathodes for the visible range were introduced in the ’50s and 
progressively developed employing compounds of alkali metals (Na, K, Cs, which 
have low work functions) and Antimony (Sb). Main types are: 
 

• S11 (SbCs) is one of the earliest photocathodes with a spectral response 
covering the ultraviolet and visible range, offering better blue response 
and lower dark current. It ranges from 300nm to 600nm and has a 
maximum quantum detection efficiency of 15% at 450nm. 

• S20 ranges from 300nm to 800nm, has a maximum ηD≈20% at 350nm; 
multi-alkali halide Na-K-Sb-Cs. 
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• S25 extends the range up to 800nm, peak ηD≈5%	at 600nm; multi-alkali 
Na-K-Sb-Cs like S20, but with a thicker layer that gives higher sensitivity 
in the red, at the cost of lower sensitivity in the blue-green. 
 

In figure 20.5 it is possible to see the radiant sensitivity graph of different types of 
cathodes. 
 

 
Figure 20.5:  Photocathode Radiant Sensitivity 
 
20.4.4 PhotoCathodes with negative Ea 
Progress in semiconductor physics and technology led in the ’70s to devise a new 
class of photocathodes, called photocathodes with Negative Electron Affinity (NEA) 
Starting from a GaAs crystal substrate, a few atomic layers of Cesium Oxide (Cs-O) 
are deposited and activated, thus forming a very thin positive charge layer of Cs+ 
ions.  
The electric field generated at the surface curves downward the energy bands: the 
vacuum potential level is now lower than the bottom of conduction band, i.e. the 
electron affinity Ea is negative. Electrons can now escape into vacuum also when 
thermalized at the bottom of conduction band and so the QE is enhanced. 
Photoelectron emission is obtained also with photons with lower energy Ep, down to 
the GaAs energy gap Eg 
 

 
Figure 20.6:  p-doped GaAs crystal activated to achieve negative electron affinity 
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20.5 Detector Dark Current and Noise  
A finite current is emitted by any photocathode even when kept in the dark, i.e. 
without any light reaching it; this a spontaneous emission of carriers due to thermal 
effects (phonon-electron interactions in the cathode); it is called Dark Current.  
The dark current density jB (per unit area of cathode) depends on the cathode type 
and on the cathode temperature. Typical values at room temperature are reported in 
the following Table: 

 
The total Dark Current is  

𝐼B	=	𝑗B𝐴D	
 

where AD is the area of the photocathode. The shot noise of IB is the photodetector 
unavoidable internal noise, with effective power density (unilateral): 
 

Á𝑆9 = Á2𝑞𝐼9 = Á2𝑞𝑗9Á𝐴r  
 
Typical values of Á𝑆9 are reported in the table below: 

 
 
We know that for low-noise operation a high impedance sensor must be connected 
to a preamplifier with high input impedance and low input noise. The best available 
preamplifiers have current noise at room temperature: 
 

Á𝑆= ≈ 0.01𝑝𝐴/√𝐻𝑧 
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When dealing with phototubes, the circuit noise Á𝑆= is always dominant and the 
detector internal noise Á𝑆9 plays in practice no role with any phototube, even for 
detectors with S1 photocathodes (that have the highest noise) and even with very 
wide sensitive area (up to many square centimeters). In fact, for producing shot noise 
with power density higher than typical circuit noise, the phototube dark current 
should be IB>300pA, corresponding to an emission rate nB	>	109 electrons/s. 

 
Figure 20.7: Equivalent circuit of high impedance sensor 
 
Vacuum tube sensors can thus be employed for operating at low noise without 
stringent limits to the sensitive area. As we will see, this is a definite advantage over 
semiconductor photodiodes, which are dominated by the internal shot noise. 
 
20.6 Low- noise Preamplifiers for Phototubes 
Phototubes are high-impedance sensors; hence for low-noise operation it is 
mandatory to employ a preamplifier with high input resistance RiA →∞ 
A typical configuration used in this case consists of a voltage buffer featuring a high 
input impedance and a low-noise amplifier.  
 

 
Figure 20.8: Voltage buffer based on high input impedance preamplifier 

 
With this configuration, shown in figure 20.8, we are simply integrating the output 
current of our device on the capacitor CL.  
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Considering 
 

• CL total load capacitance = CD (detector cap.) + CiA (amplifier cap.) + CS 
(connection cap.) 

• RL total load resistance à ∞ 
• Sv amplifier voltage noise 
• SiT total current noise = SiD detector noise + SiA amplifier noise (+ SiR load 

resistor noise) 
 

We will obtain 

𝑣H(𝑡) = 	
𝑄
𝐶�
	1(𝑡) 

And, for the noise spectrum 

𝑆H = 𝑆E +	𝑆=-
1

𝜔%𝐶�%
 

 

The buffer configuration has some noteworthy drawbacks. 
 

• The signal amplitude Q/CL is ruled by the total capacitance CL = CD + CiA + Cs , 
whose value is not very small and not well controllable, particularly in cases 
where long sensor-preamplifier connections contribute to a remarkable Cs. CL 

may be different from sample to sample of the amplifier, even of the same 
amplifier model. 

• With signals in high-rate sequence, the superposition of voltage steps may 
build-up and produce a significant decrease of the phototubes bias voltage. This 
may change the operating conditions of the sensor and consequently the 
parameters and performance of the detector, particularly if the phototube is 
biased not much above the saturation voltage. 

 
20.6.1 Charge Preamplifier or Transimpedance Preamplifier   
An alternative configuration for a charge amplifier is an operational amplifier in 
integrator configuration based on a low-noise amplifier with high input impedance.  
 

 
Figure 20.9: Transimpedance pre amplifier 
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In this case we have 
 

• CF capacitor in feedback. The CF value can be very small and is accurately set 
by the capacitor component, because the inherent stray capacitance between 
output and input pins of the amplifier is negligible. Therefore, one can work 
with CF << CL  

• RF feedback resistor à ∞ 
• CL total load capacitance = CD (detector cap.) + CiA (amplifier cap.) + CS 

(connection cap.) 
• RL total load resistance à ∞ 
• Sv amplifier voltage noise 
• SiT total current noise = SiD detector noise + SiA amplifier noise (+ SiR load 

resistor noise) 
 

We can then calculate the output signal, both in frequency domain 
 

𝑉� =	−𝑄𝑍{ =	−
𝑄

𝑗ω𝐶{
 

And in time domain 

𝑣�(𝑡) = 	−
𝑄
𝐶{
(𝑡) 

 
With respect to the buffer, the amplitude is greater by the gain factor 
 

Gc = CL /CF >> 1 
 

|𝑣�| = 	
𝑄
𝐶{
=	
𝐶�
𝐶{

𝑄
𝐶�
=	
𝐶�
𝐶{
	 |𝑣H| = 𝐺]|𝑣H| 

 
We have seen that the higher the signal, the lower is the impact of the noise of the 
following circuits, so the advantage of this stage is its amplification. Furthermore, 
the signal amplitude is ruled by the well-controlled and stable 𝐶{, no more by the 
other capacitance CD, CiA, CS. Finally, the detector terminal is connected to the virtual 
ground of the amplifier, hence it stays at constant bias voltage even with signals 
coming in high-rate sequence.  
If we consider now the noise of the configuration, denoting by ZL the load impedance 
and by ZF the feedback impedance we have 
 

𝑆] = 𝑆� )1 +
¥:
¥?
)
%
+ SiT |𝑍{|% 

 
In our case 𝑍�~1/	𝑗ω𝐶� and 𝑍{~1/𝑗ω𝐶{ so that: 
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If  ]:

]?
	<<1, with good approximation it is  

𝑆]~ µ]?
]:
¶
%
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With respect to the buffer, the signal and noise thus benefit of the same gain 𝐺]: 
therefore, the attainable S/N is the same with the charge preamplifier as with the 
voltage buffer preamplifier (as expected).  
 
20.8 NEP and Detectivity 
Photodetector sensitivity is a convenient, even necessary, metric by which the 
performance of a particular photodetector can be quantified and compared with other 
detectors. However, in some cases this parameter could be not enough. The Noise 
Equivalent Power (NEP) is a figure of merit that takes into account the photon 
detection efficiency and the detector dark-current noise, but not the preamplifier 
noise. We can define it as the input signal power that results in a signal-to-noise ratio 
(S/R) of 1 in a 1 Hz output bandwidth. Essentially, the NEP expresses the minimum 
detectable power per square root bandwidth of a given detector; in other words, it’s 
a measure of the weakest optical signal that can be detected if we are limited by the 
internal noise of the detector and not by the electronic circuit noise. This is NOT the 
case with phototubes but we will see that it is the case with photomultiplier tubes.   
NEP was devised as a figure of merit for comparing objectively the intrinsic quality 
of different detectors.  
Let’s consider a photocathode with an area AD , signal current Ip and Dark Current 
IB with area density jB . Employing a filter with bandwidth (unilateral) Δf we have 
noise: 
 

X𝚤6%* = Á2𝑞𝐼9𝛥𝑓 = Á2𝑞𝑗9Á𝐴rÁ𝛥𝑓         
 
And we would have a signal- to- noise ratio: 
 

𝑆
𝑁 =

𝐼3

X𝚤6%*
 

 
The minimum measurable current signal Ip,min , which corresponds to S/N=1, is: 
 

𝐼/,<=6 =	X𝚤6%* =	Á2𝑞𝑗9Á𝐴rÁ𝛥𝑓 
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For illumination with optical power Pp at a given λ the Detector Responsivity is: 
 

𝑆r =
𝐼3
𝑃3
=	𝜂r

𝜆
ℎ𝑐/𝑞 = 𝜂r

𝜆[𝜇𝑚]
1,24  

 
As mentioned before, NEP is defined as the minimum input optical power PP,min 

corresponding to the minimum measurable signal: 

𝑁𝐸𝑃 = 𝑃3,<=6 =	
𝐼3,<=6
𝑆r

=	
X𝚤6%*

𝑆r
=
Á2𝑞𝑗9Á𝐴r

𝑆r
 

 
However, the NEP is not a fully objective figure of merit for assessing and comparing 
the quality of photocathodes: in fact, cathodes of equal quality have different NEP if 
they have different area.  
A different figure named Detectivity D* was therefore derived from the NEP by 
 

a) considering the NEP value normalized to unit sensitive area (AD = 1cm2) 
b) defining the Detectivity D* as the reciprocal of the normalized NEP 

 
The advantage of using specific detectivity D* is that it allows the comparison of 
detectors that have different active areas. 
 

𝐷∗ =	$%§$&'
()*

      
                                

Which would be: 
 

𝐷∗ =	 +§
$,-.¨

= 𝜂/
0[2!]
4,,6

4
$,-.¨

                     
 
To select the optimal photodetector for a certain application, a number of different 
factors need to be considered. Above all, the wavelength range, the detector 
bandwidth, the conversion gain, and the detector size should match the requirements 
of the intended measurement. 
 



 

 

   CHAPTER   21 

Semiconductor 
Photodiodes 
In this chapter a particular kind of sensor is presented: the photodiode. We will 
describe the physical structure and behavior of this device. We will study how to 
deal with noise in the system and to quantify its efficiency.  
 

21.1 Introduction 
The physical structure of a semiconductor photodiode is based on a pn junction: we 
will draw the characteristic of this sensor and find a suitable stationary equivalent 
circuit for each working point. We will discuss the main features and limits of this 
detector: starting from the explanation of how electron-holes pairs are generated, 
we will introduce the photon detection efficiency of this sensor; at the same time, 
we will face issues related to dark current and noise. By applying the Shockley-
Ramo theorem we will finally study the current flowing in the external circuit.  
With an equivalent circuit we will determine the dynamic response: we will see that 
the sensitive area has to be limited to get a reasonable time constant. Some 
unwanted effects connected to the diffusion of carries in neutral regions will be 
considered.  
 
21.2 PhotoDiode (PD) devices  
In this section, we will mainly consider pn junction-based photodiodes because of 
their advantageous dimensions and good performance. The working principle is the 
same as phototubes, but since they are based on semiconductor material they can 
be easily integrated and employed in optoelectronics applications such as optical 
communications. 
Figure 21.1 shows the internal structure of a pn junction photodiode. As you can 
see, it can be both side-illuminated (on the left) or front-illuminated (on the right). 
The side-illuminated solution is adopted for specific purposes, e.g. in microsystems 
with integrated waveguides for on chip optical connections. Front-illuminated 
photodiodes, instead, are more widely employed since the design of the active area 
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(that collects the light) is more flexible and the size can be wider. Illumination 
usually happens through a window defined by an annular electrode.  
 

Figure 21.1: Basic device structure of a photodiode. 
 

For the sake of simplicity, we choose to study the structure in figure 21.1 as a 1-
dimension device, that is to neglect the curvature effects. The most used material is 
Silicon with different doping on the two sides. Referring to figure 21.1, the top 
region is doped with a concentration Nd of donors, whereas the bottom region has 
a doping concentration Na of acceptors. Let’s consider the case where Na and Nd are 
homogeneous in their regions and let’s consider a p+n junction, which means that 
Na >>Nd. The p+ region is typically very thin (thinner than 1 μm), so it is usually 
formed by planar diffusion into the n-layer. As the n-region and the p-region are 
put in contact, the majority carriers of each side diffuse towards the opposite side. 
At the equilibrium we have two neutral layers at the opposite ends and a depleted 
layer DL around the junction. In the DL there are positive exposed charges, ionized 
donors, on the n side and negative exposed charges, ionized acceptors, on the p side. 
The number of free carries here is negligible with respect to Nd and Na. 
 
21.3 Carrier generation 
When light impinges on the photodiode, we can have two different scenarios: 
- the photon is absorbed in the depleted region: the photon overcomes the neutral 
input region without being absorbed and the absorption event happens in the depleted 
region in which a pair is generated. A carrier in the depleted layer induces opposite 
charges in the conductive electrodes (neutral semiconductor layer and metal contact 
to the external circuit). The value of the induced charge on a given electrode depends 
on the carrier distance from the electrode. If the carrier moves, the charge induced on 
the electrode varies, hence current flows through the contact. 
- the photon is absorbed in the neutral region: the absorption of the photon takes 
place in the neutral region and here the electron-hole pair is generated. A carrier in 
the neutral region is surrounded by a huge population of other free carriers. When a 
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carrier moves, the distribution of free carriers swiftly rearranges itself to electrically 
screen any effect of the carrier motion to the external circuit. 
 

 
Figure 21.2: Carrier motion in PD. For sake of simplicity the band diagram is linear, instead of quadratic. 
 
To summarize, if the electron-hole pairs is generated in the depleted region, it feels 
the high electric field and causes current to flow through the metal contact to the 
external circuit, whereas if the carriers are generated in the neutral region they do not 
feel any electric field and do not generate any current. 
 
21.4 Carrier diffusion effects 
Now we want to study more in detail the effects of free carriers diffusing in the 
neutral regions. Let us first consider the current that flows in the external circuit as a 
consequence of the photogeneration of a single free carrier.  
According to what we have previously explained, a carrier generated in the DL is 
immediately drifted by the electric field, so the response is a prompt current pulse 
(Figure 21.3, case a). In alternative a carrier can be generated in a neutral region and 
it random-walks by diffusion: in this case, the carrier can either attains the DL or not; 
in the second case, it recombines to a trap state according to the Shockley-Hall-Read 
theory. The recombination rate is 
 

𝑅 = ©ª
1
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Figure 21.3: Single-carrier responses. 
 
where Δn is the minority carrier excess with respect to the equilibrium condition and 
τ is their lifetime.  
When a carrier generated in the neutral region reaches the DL, it gives rise to a pulse 
with a random delay tD equal to the time needed by the particle to reach the DL itself 
(figure 21.3, case b); in this case, the signal lasts as long as the time needed by the 
electron or the hole to cross the DL.  
It is obvious that in case the electron and hole recombine before they reach the DL, 
no current pulse can be measured by the external circuit (figure 21.3, case c).   
Now we can describe the response to a multiphoton pulse (figure 21.4). 
 

Figure 21.4: Response to a multiphoton pulse.  
 

The blue part of the graph represents the short main pulse, which is the response to 
the photons absorbed in the depleted layer. The longer and slower “tail” is due to the 
photons absorbed in the neutral substrate. The shape and the size of this red part are 
related to the device geometry, to material properties such as the diffusion coefficient 
and the minority carrier lifetime and to the space distribution of the absorbed photons, 
hence to the wavelength. The presence of the “diffusion tail” improves the photon 
detection efficiency, since it brings to the output the contribution of photons absorbed 
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in the neutral region, but it degrades the dynamic response since the “tail” is usually 
far longer than the main pulse. The span of the red part increases with the width of 
the neutral regions and with minority carrier lifetime, which is longer at a lower 
doping level. In Si-photodiodes the “tail” can be quite significant, ranging from a few 
100ns with thick layer (ws >100μm) and low doping (≈1014/cm3) to a few 100ps with 
thin layer (ws≈1÷2μm) and moderately high doping (≈1016/cm3)  
 
21.5 I-V characteristics of PhotoDiodes      
A silicon photodiode can be modelled with a current source in parallel to a capacitor 
(figure 21.5). The current source represents the current generated by the incident 
radiation, and the capacitor (CD) represents the p-n junction. In addition, a shunt 
resistance (Rj) is typically in parallel to the other components, while a series 
resistance (RD) is connected in series with all components in this model. 

 
 
Figure 21.5: Equivalent circuit of a photodiode 
 
The I-V characteristic is equal to the one of a normal diode but it is shifted vertically 
by the additional photogenerated contribution as we can see in figure 21.6. 
 

 
Figure 21.6:  I-V characteristic of a photodiode 
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With: 
• Vj: direct bias voltage 
• Ip: photocurrent (photogenerated carriers) 
• I0: reverse current (thermally generated carriers) 

 

 
Figure 21.7: Reverse I-V characteristic 
 
The characteristic above is simply obtained flipping on both axis the graph in figure 
21.6. 

 
In case of Vd>>Vth the reverse current Id will be almost equal to the photogenerated 
current and hence to the impinging light. 
 

 
 

The photogenerated current will be simply: 
 

 

 

Where SD is the radiant sensitivity and PL is the input optical power. 
 
The signal current can be basically read in two operation modes: with passive load 
or with active load. The main purpose of the load is to convert the signal from current 
into voltage. The active solution is typically preferred in order not to modify the bias 
of the photodiode and hence its performance. From the SNR point of view the two 
configurations are obviously the same. 
Semiconductor photodiodes can be operated also without a bias voltage source (VA). 
As outlined below, the short-circuit current is measured in the photoconductive mode 
and the open-circuit voltage in the photovoltaic mode. These configurations have 
modest sensitivity and slow response, but their simplicity is attractive in some 
practical cases, e.g. for monitoring a steady light over a wide dynamic range. 
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Figure 21.8: Stationary operation of PD 
 
In the photoconductive mode the feedback fixes the bias voltage at zero so the 
photodiode basically works on the y-axis of the I-V characteristic. All the current will 
flow through the feedback resistance and the output voltage will be proportional to 
it. 
In the photovoltaic mode, instead, the infinite input resistance of the amplifier makes 
nil the current. We are now working on the x-axis. The problem of this configuration 
is that the variations of the voltage are small and often difficult to detect.  
 

 
Figure 21.9: Operation modes of PD without bias voltage 
 
21.6 Photon Detection Efficiency ηD 
The photon detection efficiency or quantum detection efficiency (ηD) in 
photodiodes is strictly related to the probability (Pd) of a photon to generate a free 
electron-hole pair in the depletion layer, which is the product of three terms: 
• The probability of a photon to not being reflected at the surface of the 

photodiodes 
• The probability of a photon to not being absorbed in the top neutral layer wn  
• The probability of a photon to being absorbed in the depletion layer wd  
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Figure 21.10: Basic device structure of a photodiode. 
 

and so Pd  is given by 

 
where R is the reflectivity, which describes the probability of reflection (this is why 
we have the term 1-R), α is 1/Lα where Lα is the optical absorption depth. 
Well, also in the neutral region there is photogeneration of carriers, but in the 
majority of photodiode structures the probability that those carriers reach by 
diffusion the depletion layer is low, so in these cases the photon detection efficiency 
is simply 
 

 
 

Obviously in the structures where the carriers photogenerated in the neutral region 
have significant probability of reaching the depletion region, we have to take into 
account other contributions to ηd , but we are not dealing with those cases here. 
It is clear that the photon detection efficiency depends on the actual material 
properties, on the photodiode structure and on the light wavelength λ which cause 
surface reflection, absorption in the neutral layer and the incomplete absorption in 
the depletion layer. 
The reflection at vacuum-semiconductor’s surface is quite strong due to the high 
step discontinuity in the refractive index n, which is high in semiconductors. For 
example, in silicon n>3.5 in the visible spectrum and it rises at shorter λ, and so 
does the reflectivity, which is R>30% in the visible spectrum and it rises at shorter 
wavelength. We can reduce these reflection losses by applying layers of anti-
reflection (AR) coating consisting of alternating layers of differenta index material. 
With this technique we can obtain a reduction down to R<<10%. For example, in 
silicon photodiodes, a simple AR coating made of SiO2 (n ≈ 2) can reduce R down 
to 10%. 
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For the loss caused by the absorption in the neutral input layer, ηd has basically a 
cutoff at short wavelength, because photons are all absorbed in this layer before 
they reach the depleted layer. As we can see from the second term of ηd  
 

𝜂r  =   𝑃K   =    (1 − 𝑅) ⋅ 𝑒
#VA�/ ⋅ §1 − 𝑒#

VK
�/ © 

the probability for the photon to escape the neutral layer is ruled by wn/Lα . In silicon 
Lα is small at short λ; for example, at λ = 400nm we have Lα around 100nm. 
The last source of ηd loss we deal with is, as we mentioned before, the incomplete 
absorption in the depletion layer, which gives a cutoff at long wavelengths.  
The term of ηd involved in the absorption is the third one; it is ruled by wd/Lα, and 
with 

wd/Lα << 1 
we get  
                                          
Also, in actual Si-PD structures the depth of the depletion layer (wd) can go from 
one to tens of µm: combining this with the λ-dependence of Lα, the λ cutoff goes 
from about 900nm to 1100nm. 
Current Si-PD can provide high efficiency in the visible spectrum; if we want to 
extend the range to longer wavelength, we have to use other semiconductors; for 
example, with Germanium the limit is up to 1500nm and we can reach 2000nm with 
InGaAs. 
 

21.7 Dark Current 
As seen in the previous chapter, dark current (IB) is a relatively small electric current 
that flows through photosensitive devices, like photodiodes, even when no photons 
are entering the device; it consists of charges generated in the detector when no 
outside radiation is entering the detector. It is referred to as reverse bias leakage 
current in non-optical devices and it is present in all diodes. Physically, dark current 
is due to the random generation of electrons and holes within the depletion region 
of the device, and it is caused by thermal effects (actually, in device structures with 
high electric field it is caused also by tunnel effects). 
Various physical phenomena take part in the carrier generation and recombination, 
with different relevance in the various cases, with different materials, device 
structures and operating conditions (bias voltage, temperature, etc.). For example, 
silicon has very favorable properties for achieving low generation rate; otherwise 
materials for IR detectors (Ge, InGaAs) have smaller energy gap and therefore 
inherently higher noise, since all generation processes are favored by a smaller EG. 
In this case we are dealing with both direct transitions and trap-assisted transitions; 
in this last case the electron in transition between bands passes through a new 
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energy state (localized state) created within the band gap by an impurity in the 
lattice. 
 

 
 

Figure 21.11: Thermal transitions (on the left) and transitions assisted by high electric field (on the right) 
 

The localized state can absorb differences in momentum between the carriers, and 
so this process is the dominant generation and recombination process in silicon and 
other indirect bandgap materials. 
The transition due to tunnel effect is possible only in high electric field because the 
conduction and valence bands have to be bended a lot, in order to have a transition 
with the tunnel effect. 
The dark current contributes to the total system noise and it produces random 
fluctuations around the average photocurrent; it therefore manifests itself as shot 
noise on the photocurrent. The shot noise of IB is the photodiode internal noise, with 
effective unilateral power density equal to 
 

Á𝑆9 = Á2𝑞𝐼9 
 

The internal noise of photodiodes with microelectronic size (with a sensitive area < 
1mm2) is typically much lower than the input noise of even the best high-impedance 
preamplifiers. In the applications of microelectronic photodiode, the circuit noise is 
dominant, just like for vacuum phototubes. 
However, semiconductor PDs have dark current density jB much higher than 
vacuum phototubes; this fact significantly limits the size of the active area of 
semiconductor detectors that can be employed for very low-noise operation. 
In silicon devices, it is proven that the main contribution to dark current in reverse 
biased junctions with moderate electric field intensity is due to thermal generation 
of carriers in the depletion region. The thermal generation rate in the depletion layer 
has a volume density nG given by 
 

𝑛e =
𝑛=
2𝜏 
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where ni is the intrinsic carrier density, equal to 1.45 x 1010 cm-3 at room 
temperature, and τ represents the minority carrier lifetime, which is strongly 
dependent on the device technology, like the material used and the fabrication 
process. The carrier lifetime is in the order of µs for ordinary Si technology in 
integrated circuits, ms for detector devices and in the range of 1-10 seconds for the 
best available Si technology for detector devices. 
The last thing we discuss in this paragraph is the active area of Silicon 
Photodetectors. A Si-PD with circular active area of diameter D (so the area is A = 
π D2/4) and depletion layer thickness wd has dark generation rate of nB = nGAwd; if 
we set a limit nB < nBmax the diameter of the active area has to be limited accordingly 
and we obtain 

𝐴 < 𝐴𝑚𝑎𝑥 6L,MN
63VK 	

= %16L,MN
6>VK

 

 

𝐷 ≤ 𝐷𝑚𝑎𝑥À
8𝜏𝑛9S«¬
𝜋𝑛=𝑤K

	

 

21.8 Current Signal in PDs 
The carriers drifting in depleted regions induce current at PD terminals, whereas 
carriers diffusing in neutral regions do NOT. The Shockley-Ramo (S-R) theorem is 
still valid in presence of space charge. 
The Shockley–Ramo theorem allows us to easily calculate the instantaneous electric 
current induced by a charge moving in proximity of an electrode. It is based on the 
concept that current induced in the electrode is due to the instantaneous change of 
electrostatic flux lines which end on the electrode, not the amount of charge 
received by the electrode per second.  
We saw the S–R theorem states that the instantaneous current i induced on a given 
electrode due to the motion of a charge is given by 
 

i = Ev q v 
 

where q is the charge of the particle, v is its instantaneous velocity and Ev is the 
component of the electric field in the direction of v at the charge's instantaneous 
position, under the following conditions: the charge is removed, the given electrode 
is raised to unit potential, and all other conductors are grounded. So, knowing the 
actual velocity vc of a drifting carrier, the current induced at the PD terminals can 
be computed by the S-R theorem. 
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Figure 21.13: 
Representation of some parameters used in this 
analysis, in relation to the cross-section of a 
typical PD structure 
 

Figure 21.13a: 
Space charge density ρ in the depleted region 
 

Figure 21.13b: 
Electric field Ed, which as we can see is greater 
than the saturation field Eds over almost all wd 
 

Figure 21.13c: 
Electron and hole drift velocity vn and vp, which 
are ≈ vns and ≈ vps over almost all wd 
 

Figure 21.13d: 
Reference electric field Ev for S-R theorem, 
which is equal to Ev = 1/wd 

 

Figure 21.20: 
Representation of the electron and hole current (in 
time) with different generation positions. 
The current is ic = Ecqcvc for the S-R theorem, as we 
mentioned before 
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The motion of carriers in a semiconductor with electric field Ed is different from 
that in vacuum with equal Ed, because carriers suffer of scattering on the lattice and 
dissipate most of the energy received from the field due to the collisions. So, the 
drift velocity vc has to be a function of the field Ed, and not the acceleration. 
Moreover, in Silicon (and other materials) the motion of electrons is different from 
the motion of holes: at low field Ed < 2 kV/cm = 0,2 V/μm the regime is Ohmic and 
we have vc = µcEd (with electron mobility of μn≈1500 cm2V-1s-1 and holes mobility 
of μp≈450 cm2V-1s-1). As Ed increases above 2kV/cm, the velocity rises 
progressively slower, at Eds≈20kV/cm = 2V/μm the velocity saturates at the 
scattering-limited values of vns ≈ 107 cm/s for electrons and vps ≈ 8 x 106 cm/s for 
holes, which are almost equal to the thermal scattering velocity vth ≈ 107 cm/s. 
There is not much to say about what we see in the Figure 21.20: the currents in time 
clearly depend on how much the carrier has to move and, on its velocity,, so the 
duration of a single-carrier pulse is given by the transit time Tt of the carrier in the 
depleted region. At saturated velocity it is quite short; in silicon the carrier travels 
at ≈10ps/μm, and with wd = 1 ÷ 100μm we have Tt = 10ps ÷ 1ns. 
The single-carrier pulse duration thus depends on the position of carrier generation. 
Strictly speaking, the waveform of the current due to a fast multi-photon pulse is 
not the convolution of the optical pulse with a standard carrier response, but it is a 
more complex computation that depends on the spatial distribution of absorbed 
photons. However, convolution with a suitable standard single-carrier response 
gives the waveform with approximation adequate for most cases, at least for times 
longer than the carrier transit time. A simplifying and conservative approximation 
currently employed for silicon PDs assumes as standard the response to an electron 
that crosses all the depletion layer. A finite width of response implies a low-pass 
filtering in light-to-current transduction, it’s a mobile-mean over time Tt = wd/vsn , 
with upper band-limit 1/2Tt = vsn/2wd.  
It’s worth noting the there is a trade-off on the choice of wd: a long wd is required 
for high quantum efficiency at long wavelength λ, while a short wd is needed for 
ultrafast time response. Remark, however, that this is valid for front-illuminated 
junction and not with side illuminated junction. 
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  CHAPTER     22 

Photomultiplier Tubes 
 
Among photodetectors, Photomultiplier Tubes play a main role as they are able to detect single photons 
impinging on their surface. In this chapter Photomultipliers main characteristics are analysed, with the 
aim of clarifying their working principle and features. A closer analysis will be carried out concerning 
their Single Electron Response, their gain and the minimum measurable signal. 
 

 
22.1 Introduction: the rationale behind Photomultipliers 
Low-power light measurements are the essence of several applications, such as 
spectroscopy, nuclear physics and biomedical diagnostics. However, using a 
photodiode or a phototube can be challenging that is because often the noise of the 
electronic circuit is dominant with respect to the noise of the detector, i.e. the dark 
current, and it limits the minimum detectable signal. (figure 22.1) 
 

 
 

Figure 22.1: Vacuum Tube Photodiode signal and noise model 
 

To enhance the Signal to Noise Ratio (SNR), a possible solution would be to amplify 
the signal, before it sums up with the circuit noise. Such a gain cannot be provided 
by an electronic circuit, as we would incur in the aforementioned problem, but we 
should change the structure of the photodetector itself. (figure 22.2)  
 

 
 

Figure 22.2: Principle of Photomultiplier tubes: through an electron multiplier a gain is added to the 
phototube without increasing the noise of the electronics. 
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The core idea is to multiply the primary electrons, i.e. the electrons emitted by the 
photocathode due to the incoming light: in this scenario, the output anode current 
would be higher than the photocathode current. 
Ideally, following this approach, it would be possible to detect a weak light down to 
a single photon. In the next sections an overview of the physical principle is provided 
as well as a more detailed analysis concerning statistical description of Single 
Electron Response and gain. Moreover, the achievable Signal to Noise ratio is 
derived and further possible improved structures are presented.  
 
22.2 Physical principle and Device structure  
To increase the anode current without further increasing the noise of the electronics, 
an electron multiplier should be used.  
An electron multiplier is a chain of dynodes, which are electrodes coated with a 
material having a high secondary emission coefficient. Secondary emission is a 
phenomenon where primary incident particles of sufficient energy induce the 
emission of secondary particles, when hitting a surface.  
To be emitted, a secondary electron must have: 

 

• 𝐸O	 ≥ 	 𝐸+ +	𝐸`   
 

where 𝐸O	is the energy of the secondary electron, that should be sufficient to 
overcome the potential barrier, composed by the energy gap 𝐸+ and the 
electron affinity 𝐸` ; 

• A diffusion length larger than the distance from the point of generation to 
the surface 

In case of a single photon reaching the cathode, a primary electron is emitted with a 
low kinetic energy (Ee < 1eV). The electron is driven in vacuum applying a high 
voltage to the dynode and impacts with high energy on its surface (figure 22.3).  
Energy is transferred to the electrons in the dynode: the ones that gain enough energy 
to overcome the potential barrier can escape and reach the anode.  
 

 
Figure 22.3: Basic structure of an electron multiplier, composed by a cathode, a dynode and an anode.  
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The secondary emission yield 𝑔 is the number of emitted secondary electrons per 
primary electron. As the current is proportional to the number of charges, the anode 
current is the cathode current multiplied by the yield  
This basic principle can be extended to a chain of dynodes, further enhancing the 
gain. (figure 22.4) 

Figure 22.4: Electron multiplier involving five dynodes to achieve higher gain 
 
Each dynode must be biased at a higher potential than the previous one in the chain, 
to drive the electrons towards it. The bias voltage is in the order of hundreds of volts, 
to ensure that the dynode is hit with energy suitable for multiplication. The product 
of dynodes gain is the overall multiplier gain G: 
 

𝐺 =.𝑔5

Q

5R)

 

 

Being the current proportional to the number of electrons, the anode current is: 
 

𝐼| = 𝐺 ∙ 𝐼5 
 

The yield of the multiplier is strictly related to the properties of the dynode. Hence, 
it is crucial to better understand the structure of these electrodes.  
 
22.2.1 Dynode Materials 
Dynodes are electrodes coated with materials that have a secondary emission yield 
higher than one: materials such as Magnesium Oxide (MgO), Beryllium Oxide 
(BeO), Cesium Antimonide (Cs3Sb) are coated onto a substrate electrode made of 
nickel, stainless steel or copper-Beryllium alloy.  
Moreover, semiconductor materials with negative electron affinity, as Gallium 
Phosphide, have been developed for this purpose, which make it possible to achieve 
higher coefficients. That is because a negative electron affinity decreases the 
potential barrier that secondary electrons need to overcome in order to be emitted. 
The electron multiplication factor depends on the energy of the photoelectron, which 
in turn is determined by the voltage difference between each electrode: the choice of 
the bias voltage is therefore crucial.  
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Figure 22.5: Secondary electron yield g versus accelerating voltage 
 
Figure 22.5 shows the secondary emission yield 𝑔 as a function of the accelerating 
voltage for the primary electrons 𝑉r. Accelerating voltage can be substituted with 
primary electron energy, as it is defined as 𝑞𝑉r. In the plot is it possible to distinguish 
between ordinary yield, achieved by MgO dynode, and high yield, reached by GaP 
dynode. 
For 𝑉r  up to 500 V, there is a linear relationship between the emission yield	𝑔 and 
the accelerating voltage: 

𝑔 =	𝑘O𝑉r 
 
As the voltage increases, the energy is transferred to electrons in deeper layers in the 
material, which have lower probability to escape in vacuum, and 𝑔 saturates. 
The bias point is chosen to work in the linear range: ordinary emitters work with 𝑔 
values from ≈ 5	to ≈ 7	, while GaP dynodes have 𝑔 values from ≈ 5	to ≈ 25	, but 
are more expensive and delicate. Moreover, GaP dynodes require special care in 
operation and over long operation times their yield tends to decrease. 
Considering for example 12 dynodes and a yield 𝑔 = 3.2 the overall gain 𝐺 is 10�, 
which is a typical value for a PMT. 
Now let us consider the device structure of Photomultiplier Tubes 
 
22.2.2 Photomultiplier Tubes device structure 
The first Photomultiplier Tube was developed by RCA Laboratories in 1937: it was 
built with discrete dynodes and electrostatic-focusing. In the following years 
different companies contributed to improve these dectectors but the essentials 
elements are the same: 
 

• a photocathode converting the incident light into electron flux; 
• an electron-optical input system which focuses and accelerates the 

electron flux; 
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• an electron multiplier whose basic structure was described in previous 
sections;  

•  an anode collecting the electron flux. 
 
Among photocathodes we can distinguish two main kinds: 
 

- Opaque cathodes: electrons are emitted from the illuminated side. 
 

- Semi-transparent cathodes: electrons are emitted on the opposite side to 
the incident light 
 

These two kinds are used for different input windows and PMTs can be distinguished 
in Side-on Photomultiplier Tubes (figure 22.6) and End-on Photomultiplier Tubes 
(figure 22.7). 
In Side-on multipliers, incident light enters from one side of the device; an opaque 
photocathode is therefore used to generate the signal, because the dynode chain is 
placed on the opposite side. 

 
Figure 22.6: Side-on Photomultiplier tube 
 
On the contrary, as shown by figure 22.7, End-on multipliers have an input window 
on one end of the tube: a semi-transparent photocathode is used as the dynode chain 
is placed behind the illuminated side of the cathode. 
 

 
Figure 22.7: End-On Photomultiplier tube 
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Thanks to the huge dimensions of the photocathode, PMTs can offer a higher SNR 
than smaller solid-state detectors; indeed, when increasing the area the device collects 
a higher numer of photons 𝑁/ (if the incoming light is not spatially limited) and as a 
consequence the signal is increased by a factor 𝑁/ while the noise by a factor of Á𝑁/ 
due to photon Poissonian distribution. 
PMTs also have some drawbacks: first of all, they are quite fragile as the tube is made 
of glass, and vibrations need to be controlled; their fragile and bulky nature prevents 
them to be used in a wide range of applications where more robust and small detectors 
are needed. Moreover, mechanical designing is extremely challenging due to the high 
number of dynodes close together; finally the magnetic field has a very detrimental 
effect on the operation of the device so they cannot be exploited in some 
environments. Nevertheless, PMTs are still used in many fields. 
Once the basic structure of the device is understood, let us focus on the dynamic 
response of the detector, through the analysis of its single electron response (SER). 
 
22.3 Photomultiplier Dynamic Response: Single electron 
response pulses 
The output current pulse for a single photoelectron is called the Single Electron 
Response or SER of the PMT. Figure 22.8 shows the current pulse given by a single 
photon hitting the cathode 

Figure 22.8: SER current pulse characterized by its transit time 𝑡/ and its pulse width 𝑇0 
 
Some observations can be made from the graph. As dynodes electrostatically screen 
the anode, only an electron emitted from the last dynode can reach the anode and 
generate a current pulse: a delay is therefore present and it is expressed as the delay 
of the pulse barycenter, called transit time (𝑡H). 
This intuitive explanation is verified by the Shockley-Ramo Theorem, that states that 
the current 𝑖� flowing into the output anode can be computed as: 
 

𝑖� = 𝑞𝐸E////⃗ ∙ 	 �⃗�� 
 

Where 𝐸E////⃗  is the reference electrostatic field obtained grounding all electrodes except 
from the anode (at 1V) and �⃗�� the speed of the electron.  
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Due to the dynode electrostatical screen, the reference electric field is nihil until the 
last dynode is reach, and so is the current. 
It can be observed that transit time 𝑡H is a statistical variable, that fluctuates from 
pulse to pulse. It is possible to define a transit time jitter 𝑇$, as the full width at half-
maximum FWHM of the probability density 𝑝H(𝑡H) (figure 22.9). 

Figure 22.9: Transit time probability density characterized by transit time mean value 𝑡/̂ and its jitter 𝑇1 
 
Such fluctuations originate from the dispersion of transit time from one electrode to 
the following in the chain.  
There are several causes of time dispersion, but let us have an insight on the main 
ones: 
 

• Electrons are emitted from different positions on the electrode: as the 
distance from the electrode and the dynode is not the same from every point 
of the electrode, there are different transit times, depending on the single 
trajectory. 

• Electrons have random initial velocity: even starting from the same position 
the transit time can fluctuate, depending on the initial speed of the emitted 
electrons.  
 

To minimize transit time jitter, the geometry and the potentials of the electrodes 
should be carefully designed. Another key parameter is the SER pulse width 𝑇V  
computed as the FWHM of the output current. Although it experiences some 
fluctuations, they are very small and practically negligible.  
From figure 22.8 and figure 22.9 it can be inferred that the SER pulse width is 5 to 
10 times wider than the transit time jitter. 
Once the single electron response is known, it is possible to compute the PMT 
response 𝑖/(𝑡) to a multi-photon δ-like light pulse. 
While all the photons arrive at the same time at the photocathode, the secondary 
electrons reach the anode after a transit time that fluctuates. The total current at the 
output is the convolution of the transit time distribution and the SER: 
 

𝑖/(𝑡) = 	& 𝑝H(𝑡H
"

.
)𝑖O(𝑡 − 𝑡H)𝑑𝑡H = 𝑝H ∗ 𝑖O 
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Figure 22.10: δ-response for multi-photon arrival  
  
As the δ-response to a multi-photon arrival is the convolution of	𝑝H and	𝑖O, its FWHM 
𝑇/ is the quadratic sum of the FWHMs, 	𝑇$ 	and 𝑇V, of the two terms: 
 

𝑇/ = X𝑇V% + 𝑇$%  
 

Gathering 𝑇V% and taking it out of the square root, we get: 
 

𝑇/ = 𝑇VÀ1 + §
𝑇$
𝑇V
©
%

 

 

Remembering that  √1 + 𝑥 ≈ 1 + ,
%
   for Taylor Series and being 𝑇$ ≪ 𝑇V , 

-O
-=

 is 

small (from 0.1 to 0.2) we obtain that the width of the δ-response is practically equal 
to the SER current pulse width: 
 

𝑇/ ≈ 𝑇V ñ1 +
1
2 |𝑇$/𝑇V}

%
ò ≈ 𝑇V 

 

Being 	𝑇V finite, PMT employed as a current amplifier has a finite bandwidth 𝑓/: 
 

𝑓/ =
1

𝑘`𝑇V
 

 

The coefficient 𝑘` depends on the SER pulse waveform (from ≈3 to ≈10). 
 
22.4 Gain in-depth analysis 
As explained in the previous sections, the core idea behind a PMT is the presence of 
an internal gain, enabling low-power light measurement until single photon detection. 
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Consequently, the gain parameter is highly critical: indeed, its variations can impair 
accurate measurements.  
There are two main reasons underneath the fluctuations of the gain:  
 

1) Electrical fluctuations: the gain is very sensitive to power supply variations 
 

2) Intrinsic fluctuation: the emission of electrons both from cathode and from 
dynodes is not a deterministic function, but rather a statistical one, thus 
implying a random variation of the overall gain. 

It is therefore of crucial importance to understand how to choose a proper voltage 
supply to stabilize the gain and how statistical fluctuations may impact on the device 
performance and Signal to Noise ratio. 
 
22.4.1 Power supply requirements 
Concerning gain regulation, the guideline to follow in order to attain a stable gain is 
the adoption of a remarkably stable power supply.  
This principle can be inferred by looking at how gain and voltage supply are related. 
Let us consider for instance a single power supply 𝑉𝐴	(typically from 1500 to 3000 
V), which is partitioned in 𝑛 voltages by means of a voltage-divider resistor chain. 
(figure 22.11)  
 

 
Figure 22.11: Bias circuit of the PMT: anode (a) and cathode (k) terminals are connected to the device, 
while each dynode is connected to an intermediate node of the voltage divider.  
 
Each dynode is attached between two terminals and is biased at 𝑉$ = 𝑓$ 	𝑉| , where 𝑓$ 
is a pre-set fraction of the total voltage. The gain of a single dynode is proportional 
to the applied voltage and can be expressed as: 
 

𝑔$ = 𝑘	𝑉$ = 𝑘	𝑓$ 	𝑉| 
 

Multiplying the gain of every single dynode we obtain the total gain G, which 
increases with the frequency in a non-linear way: 
 

𝐺 = 𝑔)	𝑔%𝑔P…𝑔6 = (𝑘	𝑓)	𝑉|)(𝑘	𝑓%	𝑉|)(𝑘	𝑓P	𝑉|)… (𝑘	𝑓6	𝑉|) 
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Gathering all the constants we obtain: 
 

𝐺 = 𝐾	𝑉|6 
 
Finally calculating the relative variation of the total gain with respect to the voltage: 
 

𝑑𝐺
𝐺 = 𝑛

𝑑𝑉|
𝑉|

 

 
We can observe that little variations of the power supply voltage are amplified by the 
number of stages, thus causing higher gain variations. For instance if we are 
interested in a gain stability better than 1% we would require a voltage supply more 
stable than 1% 12⁄ = 0.08%. 
 
22.4.2 Statistical fluctuations of gain 
Let us focus now on the impact of statistical fluctuations on the signal and noise 
amplification of the photomultiplier. 
When experimentally evaluating the SER of a Photomultiplier tube, a particular 
phenomenon arises: the pulses are different one from the other, in the sense that they 
present the same shape but with randomly varying amplitude (figure 22.12). 

 
Figure 22.12: Single Electron Response experimental measurement: current shape is measured versus 
time; depending on gain statistical fluctuations, the amplitude of the SER randomly varies in different 
measurements. 
 
As every response is generated by a single electron, we may derive that the changing 
parameter in this situation is the overall gain of the dynode chain. In order to get the 
distribution of this gain, it is possible to measure each pulse amplitude and classify 
them in a histogram, which is the discrete version of the gain statistical distribution 
(figure 22.13). 
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Figure 22.13: Gain statistical distribution: the graph represents the probability density of obtaining a 
certain gain in a single measurement versus the possible gain values.  
 
The distribution is different changing the bias condition and it is not gaussian (as it 
is not symmetric with respect to the mean value) but skewed towards high gain 
values. The main parameter needed to describe this process are the mean gain 𝐺, the 

gain variance 𝜎e% and the relative variance 𝑣e% =	
®3
*

(e)*
. 

To get a deeper insight on how the gain distribution affects the signal and the noise, 
we can divide the PMT operation in two phases: 
 

1) Initially the photocathode emits  primary electrons as in a phototube; the 
number of electrons emitted is described by means of a Poisson distribution, 
i.e. a statistical distribution with mean value 𝑁/, variance 𝜎/% = 𝑁/ and 

relative variance 𝑣/% =	
®!*

Q!*	
=	 )

Q!
 . 

2) It is then followed by a cascade of secondary impact emissions. The overall 
statistical distribution of these secondary emissions is the one previously 
depicted in figure 22.13. 

In order to describe the statistics related to the number of output electrons, it is now 
useful to define another statistical variable, with mean value 𝑁L, variance 𝜎L% and 

relative variance 𝑣L% =	
®P*

QP*
 . The aim is therefore to find a proper expression for 𝑁L 

and 𝜎L%.  
𝑁L can be easily obtained considering that the two emission processes are 
independent, so that we can multiply the mean values: 
 

𝑁L = 𝑁/		𝐺 
 

For the variance 𝜎L% it is not mathematically correct to directly multiply the process 
variances, as we are dealing with statistical variables. It is consequently useful to 
resort to Laplace theory of probability generating functions, stating that: the relative 
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variance 𝑣L% of the output of a cascade is the sum of the relative variance of each 
stage, divided by the product of the mean values related to all the previous stages. 
 

𝑣L% = 𝑣/% +	
𝑣e%

𝑁/
	= 		

1
𝑁/
	+	

𝑣e%

𝑁/
=	

1
𝑁/
	(1 + 𝑣e%) 

 

Moreover, considering that: 

𝑣L% =
𝜎L%

𝑁L%
 

 
and equating the two expressions, we get: 
 
𝜎L% =	𝑣L%	𝑁L% =	 

)
Q!
	(1 + 𝑣e%)	𝑁/%		𝐺

%
=	𝑁/			𝐺

%
	(1 + 𝑣e%) = 	𝜎/%			𝐺

%
	(1 + 𝑣e%) 

 
where 𝐹 = 	1 + 𝑣e% is called Excess Noise Factor. 
In conclusion, we obtain the subsequent formula, meaning that the variance of the 
noise due to primary emission (the same present in a phototube) is enhanced not only 
by a factor 𝐺

%
 as expected, but also by a factor F.  

 
𝜎L% = 𝜎/%			𝐺

%
	𝐹 

 
In most common cases the value of F is almost equal to 1.5-2, as will be further 
demonstrated below. 
 
22.5 Operating mode and Signal to Noise Ratio  
Once the statistical distribution of the output electrons has been investigated, it is of 
high interest to calculate the SNR and the minimum detectable signal.  
It is useful to split the analysis in two separate discussions as the photomultiplier can 
be operated in Analog mode or in Single Photon Counting mode (also known as 
Digital mode).  
Analog mode is commonly used with higher light level, where many photons are 
impinging on the photocathode, thus generating a high number of photoelectrons and 
output pulses which are no more separable one from the others. 
Concerning the Digital mode, it operates at lower light level when single pulses can 
be identified and counted. 
 
22.5.1 Analog mode 
When dealing with Analog mode, the sensor and read-out electronics can be 
represented by the subsequent model (figure 22.15), where the signal is amplified by 
means of a preamplifier and then filtered with a low pass filter. 
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Figure 22.15: Model of PMT sensor and its read-out electronics when operating in Analog mode. 
 
The elements considered in the model are: 
Signal:  

 

𝐼/ = 𝑛/𝑞 where 𝑛/ is the photoelectron rate at photocathode 
 

Noise sources: 
 

• Due to the physics of the device: 
 

o 𝑆=! = 2𝑞𝐼/ = 2𝑞%𝑛/, shot noise of the photocurrent, increasing with signal 
o 𝑆=L = 2𝑞𝐼9 = 2𝑞%𝑛H, shot noise of background, independent from signal 
o 𝑆=Q = 2𝑞𝐼r = 2𝑞%𝑛K, shot noise of dark current, independent from signal 

 

• Due to the preamplifier: 
 

o S¯R ,	voltage	noise	spectral	density	of	the	preamplifier	
o S°R ,	current	noise	spectral	density	of	the	preamplifier	

 

• Due to the load resistor 𝑅�: 
 

𝑆=- =	
b5-
\?
,	thermal	noise	of	resistor	 	

 
Load resistor 𝑅�, typically includes cable resistance, device resistance and externally 
added resistor. 

 
Load capacitor 𝐶�, taking into account the capacitance of the device, the capacitance 
of the preamplifier and cable stray capacitances. 

 
Multiplier 𝐺%𝐹, indicating the intrinsic gain of the PMT (note that signal is increased 
by a factor 𝐺, instead noise variance by a factor  𝐺%𝐹,) 

 
Low pass filter after the preamplifier: a gated integrator was chosen as an example, 
thus implying a bandwidth limited to 𝑓{ =

)
%-:

 . 
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A first expression of the Signal to Noise Ratio may be now derived: 
 

𝑆
𝑁 =	

𝐼/𝐺

Àñ2𝑞	|𝐼/ + 𝐼9+𝐼r}𝐺%𝐹 + 𝑆=; +
𝑆E;
𝑅�%

+ 𝑆=-ò 𝑓{

= 1 

 
Since the gated integrator bandwidth is much smaller than the 𝑅�𝐶� counterpart, i.e. 

)
%&\?]?

&
%
≫ 𝑓{ =	

)
%-:

, the low pass filtering effect of 𝑅�𝐶� has been neglected for 
noise. Concerning signal, it is supposed to have a bandwidth much smaller than the 
one of the 𝑅�𝐶� parallel, so that the pulse shape is not affected. 
The minimum signal is reached when	𝑆𝑁𝑅 = 1, i.e. when signal is comparable to 
noise. Therefore if it is not possible to establish a priori which noise contribution is 
dominant, a second order equation needs to be solved in order to derive the minimum 
signal. Anyhow, it is often possible to neglect preamplifier and resistor noise, as the 
intrinsic gain makes device noise dominant with respect to the other contributions. 
 
The expression is consequently simplified to: 
 

𝑆
𝑁 =	

𝐼F𝐺

C2𝑞	p𝐼F + 𝐼(+𝐼Gq	𝐺)	𝐹	𝑓H
= 1 

 
In order to further simplify computations two practical cases may be taken into 
account: 
 

1) Background and dark current noise are negligible with respect to 
photocurrent noise: 
 

𝑆
𝑁 =	

𝐼/𝐺
Á2𝑞	𝐼𝑝	𝐺%	𝐹	𝑓𝐹

= 1 

 
𝐼/#<=6 = 2𝑞	𝐹	𝑓{ 

 

𝑁/#<=6 =
𝐼/#<=6𝑇{

𝑞 =
2𝑞	𝐹	𝑓{𝑇{

𝑞 = 𝐹 

 
 
As obtained, the minimum number of detectable photoelectrons on a time 
window 𝑇{ depends on 𝐹, which is a really small number 1.5 − 2 compared 
to the performance achieved by a phototube. It is therefore confirmed the 
possibility to detect lower light values leveraging a PMT. 
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2) On the other hand photocurrent noise could be negligible: 
 

𝑆
𝑁 =	

𝐼/𝐺
Á2𝑞	(𝐼9+𝐼r)	𝐺%	𝐹	𝑓{

= 1 

 

𝐼/#<=6 = X2𝑞	(𝐼9+𝐼r)	𝐹	𝑓𝐹 

 
In the intermediate case the second order equation needs to be solved: 
 

𝐼/	% (𝐺%) + 𝐼/(−2𝑞𝐺%	𝐹	𝑓{) − 2𝑞	(𝐼9+𝐼r)𝐺%	𝐹	𝑓{ = 0 
 
Once the minimum current has been calculated it is possible to derive the minimum 
power by means of: 
 

𝑃/#<=6 =
q!&0>A

JQ
      and      𝑆r = 𝜂r

¢[²<]
).%b[�²<]

 

 
Where 𝑆r is the radiant sensitivity of the device, 𝜆 the operating wavelength and 
𝜂rthe quantum efficiency which can be found on photocathode datasheets as for a 
phototube. 
 
22.5.2 Single Photon Counting mode 
Let us focus now on Single Photon Counting mode, which can be performed 
exploiting the conceptual scheme visible in figure 22.16 
 

 
Figure 22.16: Photon counter system 
 
Photons impinging on the photocathode generate single pulses which are amplified 
by the preamplifier and if necessary, by the main amplifier. These output pulses are 
then directed into a comparator featuring two thresholds: pulses higher than upper 
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threshold (ULD) and pulses lower than lower threshold (LLD) are eliminated. The 
pulse shaper cleans the pulses, allowing the counter to count them. 
Concerning Signal to Noise Ratio, in this situation the photomultiplier gain can be 
set so high that noise coming from the preamplifier is surely negligible. 
As we are performing digital counting, it results: 
 

𝑆
𝑁 =	

𝑁/
Á𝑁/ +𝑁9 +𝑁r

 

 
where 𝑁/ = 𝑛/𝑇{, 𝑁9 = 𝑛H𝑇{ and 𝑁r = 𝑛K𝑇{ are respectively the number of signal, 
background and dark current electrons and 𝑇{ is the measurement time. 
As discussed for the Analog mode, background and dark current noise may be 
negligible, thus implying one single event can be detected: 
 

𝑆
𝑁 =	

𝑁/
Á𝑁/

= 1 

 
𝑁/#<=6 = 1 

 
On the other hand, in case background noise is not negligible, it is possible to take 
advantage of background subtraction, meaning that measurement is executed twice: 
the first time with signal and the second one without signal (background 
measurement involving only 𝑁rand 𝑁9). Once both measurements have been 
acquired, the number of pulses of the background and dark current are subtracted 
from the total measurement. 
In this way the Signal to Noise ratio is slightly modified, as at the denominator we 
have to take into account that, when the baseline is subtracted, the variances of the 
noise acquired in the two measurement are not subtracted, but added as the two noises 
are uncorrelated. 
Consequently, we need to add a correcting factor: 
 

𝑆
𝑁 =	

𝑁/

X𝑁/ + (𝑁9 +𝑁r) µ1 +
𝑇{
𝑇{J¶

 

 
where 𝑇{J represents the background measurement time. If 𝑇{J = 𝑇{ background 
noise is doubled, if 𝑇{J ≫ 𝑇{ the doubling effect is negligible and the correcting 
factor can be omitted. 
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22.6 Progress in Photomultiplier structure 
As already mentioned, the main drawbacks concerning PMTs are their dimensions, 
fragility and sensibility to vibrations. A possible structure that solves those issues 
is the Continuous Channel Multiplier (CCM), represented in figure 22.17. 
A CCM is a special glass capillary tube, featuring a diameter smaller than 1𝑚𝑚 
and acting both as voltage divider and as electron multiplier. Its inner surface is 
chemically treated and converted in a semiconductor layer, providing high 
resistivity and secondary electron emission yield 𝑔 ≈ 1.2 − 3. 
 

 

Figure 22.17: Continuous channel multiplier CCM structure, featuring a diameter 𝐷 and a length 𝐿 
 
When a photon strikes the photocathode, an electron is emitted and focused to the 
inner surface of the tube. Due to multiple impacts, many secondary emissions are 
triggered, giving rise to an electron multiplication.  
For a fixed applied voltage the gain is dependent on the ratio 𝐿/𝐷, as increasing this 
ratio the number of impacts increases. However, as far as the number of impacts is 
augmented, the electron energy decreases, thus implying a decrease in the yield. 
A maximum gain 𝐺 of 10´	 − 10�		is attained with 𝐿/𝐷 ≈ 50 and an applied 
voltage in the range of 2000 − 3000	𝑉. 
 

 
Figure 22.18: Straight channel CCM (a) and curved channel CCM (b) 
 
It is not possible to adopt a CCM with the basic structure previously described.  
Indeed, Ion Feedback effect may cause a positive feedback enhancing current 
amplification in an uncontrolled way and generating a self-sustaining breakdown 
current.  



CHAPTER 22     

 

 296 

This phenomenon consists in the generation of free heavy ions in the last part of the 
channel, where energy is higher, by collision between electrons and residual gas 
molecules. These free ions drift in the electric field causing a strong electron 
emission by impacting on the capillary wall. If this happens in the first part of the 
channel, the electrons undergo all the channel multiplication. 
In order to avoid this effect, it is possible to bend the glass capillary as in figure 
22.18. The free ions are therefore no more able to reach the channel input, as their 
trajectory is almost straight.  
The main features of a CCM can be resumed as follows: 
 

• Dark current is lower than in common PMTs 
• The excess noise factor 𝐹 is bigger than 2, which is significantly higher 

than dynode-PMTs due to the greater statistical dispersion in CCM 
electron multiplier; 

• The amplification of a pulse leaves a charge on the multiplier surface, near 
to the output. As a consequence, a high charge modifies the electric field, 
thus impairing the amplification of the following pulses during a long 
recovery transient. This effect can be controlled, limiting the product of 
the multiplier gain and input pulse charge and/or repetition rate. 

• Space charge can give rise to non-linearities for high pulses and high gain. 

For all these reasons CCM-PMTs are suitable to detect pulses with moderate 
repetition rate and small size, down to single photons, while they offer worse 
performance for many-photon pulses and for stationary light intensity. 
In order to solve part of these issues, Micro-Channel Plate Multiplier (MCP) were 
developed (figure 22.19). Their basic structure is composed by an array of 
thousands of multiplier microtubes, embedded in beehive structure into a plate. The 
two faces of the plate are biased with a high voltage 𝑉r through metal electrodes, 
thus all channels are in parallel.  
Thanks to their planar geometry they can be matched to a planar end-window 
photocathode. Photoelectrons are focused from cathode to multiplier input by 
simply applying a high voltage. 

 

Figure 22.19: Micro-Channel Plate Multiplier (MCP) front view (on the left) and basic scheme 
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MCP features a small diameter 𝐷 ≈ 5𝜇𝑚 − 50𝜇𝑚 and an active area, which is the 
sum of the channel input sections, almost equal to 50 − 60% of the total plate area. 
As every channel works as an individual miniaturized CCM, the optimum gain is 
still achieved with a ratio 𝐿/𝐷 ≈ 50 
Concerning Ion feedback, it is avoided by mounting in series MCPs with channels 
having different inclination of their axis, thus forming an angle as in figure 22.20. 
 
 

 
Figure 22.20: MCP in series to avoid Ion Feedback 
 
Due to the presence of multiple channels, MCPs structure allows to relax some 
limitations that were introduced by CCMs.  
Firstly, this is due to the fact that electrons emitted from the same position in the 
photocathode do not enter all in the same microchannel, but they are distributed 
over a group of facing channels in the MCP.  Moreover, the perturbation of the 
voltage distribution in a channel affects the multiplication and collection of 
electrons just in that channel and in the closest ones.  
For these reasons some differences can be noticed with respect to CCMs. First of 
all, the limit to the output mean signal current is much higher than in CCMs and it 
is a small percentage of the total bias current of the MCP, not of a single 
microchannel.  
Furthermore many-photon optical pulses can be processed correctly, since the pulse 
photoelectrons do not enter a single channel, but they are processed in parallel, in 
different microchannels. 
On the other hand MCPs statistical gain distribution is similar to that of CCMs with 
an excess noise factor 𝐹 higher than 2. Additionally, MCPs have a remarkably 
superior dynamic response than dynode PMTs: indeed, transit time and jitter are 
reduced down to 𝑇H ≈ 1𝑛𝑠 and  𝑇$ ≈ 10𝑝𝑠. The SER pulse-width 𝑇V is shorter, 
around few hundreds 𝑝𝑠. 
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    CHAPTER     23 
 

Avalanche Photodiodes 
Avalanche photodiodes (APDs) are highly sensitive semiconductor electronic 
devices that can not only exploit the photoelectric effect to generate a current signal 
from light, but they also provide a built-in gain through avalanche multiplication. 
To this aim, a relatively high reverse voltage has to be applied to enhance the 
electric field and let the carriers gain sufficient kinetic energy to impact-ionize. 
 
 
23.1 Introduction 
We have seen in the previous chapter that one of the best features of PMTs is their 
capability to provide an internal gain, i.e. photogenerated carriers are multiplied 
within the detector, giving rise to an amplification of the current before it mixes with 
electronic-circuit noise. The internal gain is clearly advantageous for the SNR. 
Following the same idea, a smaller, less bulky and less fragile alternative to PMTs 
was developed: the Avalanche Photodiode (APD).  
APDs basically have the same structure of photodiodes (PDs) but different behavior. 
Let’s recall that PDs are essentially p-n junctions operated in reverse-bias conditions, 
meaning that the n-doped region is at a higher potential than the p-doped region. As 

a result, a depletion region is formed at their interface, as shown in figure 23.1. If a 
photon is absorbed in the depletion region, the free electron-hole pair that is generated 

Figure 23.1: Depletion region of a pn junction 
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gives rise to a current at the detector terminals; otherwise, a photon that is absorbed 
in the neutral region typically does not cause any current flow.  
The main difference between a PD and an APD is that in the first one each photon 
can generate at most a single electron-hole pair; on the contrary, the absorption of a 
photon in an APD can trigger an avalanche multiplication process. The design of an 
APD starts from the basic structure of a PD, but some advanced modifications have 
to be introduced in order to overcome some issues or simply to achieve high 
performance. For these reasons, several structures have been proposed in the 
literature, such as p-i-n APDs, which feature an intrinsic region between the n- and 
the p-doped region or the Reach-through APDs (RAPDs), which are p-i-n structures 
with an additional small p-type layer between the n-doped and the intrinsic region. 
APDs can be fabricated exploiting different materials: p-n junctions are usually 
implemented using silicon, but some alternatives can be useful for different reasons, 
e.g. to modify the wavelength range, the spectral response, the speed, or the energy 
gap properties. Thus, as well as in the implementation of LEDs and lasers, junctions 
fabricated using Ge, GaP, GaAs, InGaAs or other composites will be considered.   
 
23.2 Impact Ionization 
Considering the easiest implementation, the APD consists of a simple p-n junction 
reversely biased as depicted in Figure 23.1. The absorption of a photon in the 
depletion region generates an electron–hole pair (EHP): the electric field here 
separates the two carriers and drifts them towards n- and p-side, respectively. A free 
electron drifting in the field gains kinetic energy ΔEn=En-Ec. In an APD, the electric 
field in the depletion region is high so the carrier can gain a high energy. In particular, 
if ΔEn>1.5Eg a ionizing collision can occur, meaning that another EHP is released. 
As represented in Figure 23.2, this generation is a cascade process: in fact, the 
secondary electrons will be still accelerated by the high electric field and they can 
impact-ionize as well, generating other EHPs (internal gain mechanism). The 
cascade of ionizing collisions produces the avalanche multiplication of carriers. 
It is worth noting that, not only electrons, but also holes participate in the impact-
ionization process, meaning that an inherently-positive feedback is present. We will 
see that an important design guideline would be to guarantee the multiplication of 
only one carrier (either electrons or holes), to avoid the positive feedback. Indeed, 
even if this mechanism would increase the gain of the device, it is undesirable for 
several reasons: it is a random process and therefore increases the device noise and 
it can be unstable, thereby causing avalanche breakdown. 
 
23.3 Ionization Coefficients 
Even though the above described avalanche is an intrinsically discrete statistic 
process (in fact the generation of an EHPs is a phenomenon that can happen or not), 
to easily describe it we would like to address this topic in terms of continuous 
probabilities. In order to do that we have to make the following assumption: the width 
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of the multiplication region (where the high field is present) must be larger than the 
mean path covered by both electrons and holes between each collision.  

Figure 23.2: Impact ionization process 
 
Under this assumption, we can define α and β coefficients (sometimes in literature 
they are also called 𝛼6 and 𝛼/ respectively) as the ionization probabilities per unit 
length (rate of ionization, 1/cm) for electrons and holes respectively (α and β are thus 
probability densities). The inverse coefficients, 1/α and 1/β, represent the average 
distances between consecutive ionizations. The ionization coefficients increase with 
the depletion-region electric field (since it is responsible for the acceleration) and 
decrease with the device temperature. If we increase the temperature, in fact, we have 
more thermal agitation, hence more collisions, reducing the opportunity that a carrier 
gains enough energy to ionize. The following relationships hold: 

 
𝛼 = 𝛼. exp µ−

{AH
{S
¶			            for electrons 

𝛽 = 𝛽.exp	(−
{!H
{S
)                  for holes 

                                                                              
In Silicon α0 = 3,8*106 cm-1, Fn0= 1,75*106 V/cm; β0 = 2,25*107 cm-1, Fp0 = 3,26*106 V/cm.   
 
Finally, the ratio k = β /α is defined: it is a very important parameter for the 
characterization of an APD. Its value indicates which is the carrier who contributes 
the most in the avalanche: as already said, we would like to have k proximate to 0 
if we want electrons multiplication or k close to infinite if we want holes 
multiplication. Instead if the value of k is around 1, it means that both the carriers 
are equally contributing to the build-up of the avalanche. 
 
23.4 Ionization Integral and Breakdown Voltage 
First of all, we will derive the basic ionization integral which determinates the 
breakdown voltage condition; we can easily understand that, to achieve an infinite 

   n-side                                       p-side 
E 
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current due to the avalanche process, we need to increase the reverse voltage, thus 
the electric field, up to a limit value, which is called breakdown voltage.  
Let’s assume that a current 𝐼/Z is flowing at the left-hand side of the depletion region 
(as represented with 𝑗= in figure 23.3); let’s consider x = 0 at the beginning of the 
depletion region at the p side and x = w at the end of the depletion at the n side, being 
w the length of the space charge region. 
 

Figure 23.3: Electric Field across the junction and current densities 
 
 
If  the electric field in the depletion region is high enough to generate EPHs  by the 
impact ionization process, the hole-current 𝐼/ will increase with distance along the 
depletion region and reach a value 𝑀/ 𝐼/Z  at x = w .  
Similarly, the electron current 𝐼6, will increase from 𝐼6(w) = 0	to 𝐼6(0) = 𝐼 − 𝐼/Z, 
where the total current 

𝐼 = 𝐼/ − 𝐼6 
 

is constant at steady state. The continuity equation (carrier balance in dx) is 
 

 
 

Taking into account that jm = jn + jp we obtain the equation for jn 

 

 
The functions α(x) and β(x) are known: they are obtained by computing the field 
profile Fe(x) and employing the known α(Fe) and β(Fe).  
The equation can then be integrated with  jn(w) = jm and with   jn(0) = ji   as boundary 
condition.    
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In the simplest case  α = β (e.g. in GaAs) the equation is simply  
 

 
By integration we get 

 
and finally 

 
 

 
 

This is called ionization integral and it has a clear physical meaning: it is the 
probability for a carrier to have an ionizing collision in the path from x=0 to x=w. The 
current jm is the primary current ji amplified by the multiplication factor M                                    
 

 

In cases with α ≠ β the equation can still be integrated with  jn(w) = jm and with  jn(0) 
= ji   as boundary condition. The results can still be written in the form 

 

but the ionization integral Ii is now the integral of an effective ionization coefficient 
αe 

 

so that in this case 

 

The ionization integral Ii in any case strongly depends on the applied bias voltage Va 
and on the temperature T. Ii is nil until the field Fe produced by Va attains level 
sufficient for impact ionization then rises with Va, with a slope that strongly depends 
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on the actual field profile F(x). The rise of Ii is always steep and produces in all cases 
a steep rise of M with Va. Computations and experiments show that the slope of M 
gets steeper and steeper as the high-field zone gets wider. This is quite intuitive, 
since a wider zone corresponds to a higher number of collisions, which enhances 
the effect of the increased impact ionization probability due to an increase of the 
electric field. When the applied bias voltage Va reaches a characteristic value VB , the 
Ionization Integral Ii  à 1 and, according to the equation, M à ∞ and jm à ∞: VB  is 
called Breakdown Voltage. It is a characteristic feature of the diode, ruled by the 
distribution of the electric field Fe and by the dependence of α and β on the electric 
field Fe and on the temperature T. 
In particular, VB increases with the temperature T. The dependence is different in 
devices with different field profiles. It is anyway strong, some 0,1% per K degree. 
For Si, it is about ≈30 mV/K in devices with VB = 30 V and ≈900 mV/K in devices with 
VB = 300 V. 
Actually, the breakdown current is not divergent. We have seen that the current is 
self-sustaining, because of the positive feedback intrinsic in the avalanche ionization 
process. However, what keeps finite the avalanche current is the feedback effect 
due to the mobile space charge. The effect is negligible for Va < VB (hence it is not 
taken into account in the former equations), but it is enhanced by the current rise 
at Va > VB and reduces the electric field that acts on the carriers. The multiplication 
thus stabilizes itself at the self-sustaining level. 
For Va > VB the avalanche current increases linearly with Va, so that an avalanche 
resistance Ra can be defined:   
 

Ra = ΔVa /Δia 
 
In fact, ΔVa produces a proportional increment of the electric field, which increases 
the impact ionization probability, hence the avalanche current. In turn, the current 
rise produces an increase of the space charge, which counteracts the effect of ΔVa. 
The current thus rises until it brings back to self-sustaining condition the avalanche 
multiplication; that is, the current increase ΔIa is proportional to the voltage 
increase ΔVa. 
To summarize, an Avalanche PhotoDiodes (APD) is basically a photodiode biased at 
Va below the breakdown voltage VB but close to it where it provides a linear 
amplification of the current by exploiting the avalanche carrier multiplication. 
The amplification gain is the multiplication factor M, which can be adjusted by 
adjusting the bias voltage Va with respect to VB. Since VB strongly depends on the 
diode temperature T, variations of T have effect equivalent to significant variations 
of the bias Va. Therefore, for having a stable gain M, the temperature of the APD 
must be stabilized. 
A very steep increase of M with Va is unsuitable for accurate and stable control, 
since small variations of Va produce large variations of M. A gradual increase of M 
with Va is preferable.  



Avalanche photodiodes 

 305 

The actual dependence of M on Va can be fitted fairly well by an empirical equation 
 

 
 

with exponent u that depends on the field profile (and on the type of 
semiconductor); it varies from 3 to 6, with higher values corresponding to wider 
high-field zone. 
 
23.5 Reach-through APD (RAPD) 
To improve the basic structure of the APD, we can think about significantly 
increasing the Electric Field over the active area so the electrons would gain 
consequently a greater kinetic energy, aiming to a better multiplication efficiency.  
The Reach-through APD (RAPD) solution is to add a very thin p layer between the 
p- and the n-doped regions, so that it will be completely depleted, reaching the so-
called reach-through condition. A simplified scheme of a Si reach-through APD is 
shown in Figure 23.4: close to the illumination window (on the left), we have a thin 
n+ layer and then three p-type layers of different doping levels, to suitably modify the 
field profile across the diode. The first layer is a thin p-type one, the second one is a 
thick and slightly p-type doped (almost intrinsic) layer - which is indicated as p - and 
the third one is a heavily doped p+ layer. The diode is reverse biased to increase the 
field in the depletion regions. The net space charge distribution across the diode is 
shown in Figure 23.5. When a sufficiently-high reverse bias is applied, the depletion 
region in the p layer widens to reach through to the p layer (that is why it is called 
the reach-through). The electric field is given by the integration of the net space 
charge density. The variation in the field across the diode is shown in Figure 23.5: E 
is maximum at the n+p junction interface, then it decreases slowly through the upper 
p layer, that will be the avalanche region.  
 

 
Figure 23.4: Simplified scheme of a Si reach-through APD 
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Figure 23.5: The net space charge distribution and electric field across a Si reach-through APD 
 
Through the p layer, the field decreases only slightly as long as the net space charge 
density here is small. The absorption of photons takes place mainly in the long p 
layer. The reason for keeping the photogeneration within the p region and reasonably 
separate from the avalanche p region is that, avalanche multiplication is a statistical 
process and hence leads to carrier generation fluctuations, which lead to a noise in 
the photocurrent. 
This is minimized if impact ionization is performed by the carrier with the highest 
impact ionization efficiency, which in Si is the electron, which means that the 
generation of electrons is dominant. For this reason, the structure in Figure 23.4 
allows only the photogenerated electrons to flow and reach the avalanche region but 
not the photogenerated holes. 
The total depletion layer width of Si RAPDs  in most cases is from 10 to 30μm, in 
order to obtain high detection efficiency up to 800-900nm wavelength (NIR edge) 
but the width of the multiplication region (where F exceeds the ionization threshold) 
is much thinner, from 1 to a few μm. Thanks to this design, a moderately-steep rise 
of M with the bias voltage is obtained: the RAPD gain can thus be reliably controlled. 
The dependence of M on the device temperature is still remarkable also in this 
structure and it must be taken into account. 
Also with RAPD, the highest M obtained with Si-APDs is much lower than the gain 
level currently provided by PMTs. In the best cases M values up to about 500 are 
obtained; attaining M=1000 is out of the question. 
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Figure 23.6: Multiplication factor vs. reversed voltage and temperature variation 

 
23.6 Multiplication Noise in APDs 
Avalanche multiplication is a statistical process so the APD gain has random 
fluctuations that has to be taken into account in noise calculation. Let us denote by  

 

M the mean multiplication gain 
σM2 the gain variance  
vM2=σM2/ M2 the gain relative variance (defined as [variance]/[mean]2)   

 
Input:  primary carriers with  mean number Np   

variance σP2=Np  (Poisson statistics)   
Output:  multiplied carriers with 

mean number Nu = M Np  
variance σu2 

 

In the multiplication, the fluctuations of the number of primary charges are not only 
amplified by M2; they are further enhanced by a factor F>1 called Excess Noise 
Factor (like for PMTs). At the multiplier output, the relative variance is higher by the 
factor F than the input relative variance  

 
σu2= F M2σp2= F M2Np 

and so relative variance   
 

vu2 = σu2/ Nu2 = F vp2 = F /Np 
 

Primary carrier generation and avalanche multiplication are processes in cascade.  
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The output relative variance vu2 is expressed by an equation (obtained from the 
Laplace probability generating function of cascaded processes) stating that vu2 of the 
cascade is the sum the relative variance of each stage divided by the mean gain of the 
preceding stages. In our case 

 
Hence 

 
 

The excess noise factor thus is ruled by the relative variance of the gain, like for 
PMTs 

 
 

However, there is a fundamental difference with respect to PMTs. APDs have relative 
variance vM2 definitely higher than PMTs already at low M level; furthermore, the 
situation gets progressively worse as M is increased, because also vM2 increases, 
thereby increasing F.  
This behavior limits the highest APD gain M that can be usefully exploited. The 
physical processes exploited for multiplying electrons in PMTs and in APDs are 
remarkably different and the detector gain has remarkably different features. 
 
In PMTs: 

• the accelerated electron that hits a dynode is lost and the number of emitted 
secondary electrons fluctuates in a set of values that includes zero. The 
resulting mean number of carriers coming from the dynode is just the mean 
number of emitted secondary electrons and is definitely higher than unity.  

• the gain is produced by a unidirectional sequence of events, the cascade of 
statistical multiplications at the various dynodes. Cascaded statistical 
processes can be well analyzed by known mathematical approaches (as the 
Laplace probability generating function) 

 
In APDs: 

• the accelerated electron that undergoes an ionizing impact is not lost, it 
remains available for further impacts; the generation of a further electron 
(plus a hole) is statistical and the mean number of generated electrons is 
definitely lower than unity. The resulting mean number of electrons after 
the impact is one plus the mean number of generated electrons.  

• the statistical process is much more complicated than a simple cascade 
because of the intrinsic positive feedback in the impact-ionization. Rather 
than a cascade, it is a complex of interwoven feedback loops, each one 
originating from the other type of carrier (the hole in our case) generated in 
the impact.   
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Let’s try to analyze a standard case: a Silicon APD with electric field of moderate 
intensity, just above the ionization threshold. In this situation the ratio of ionization 
coefficients is very small k = β/α < 0,01 so the probability of impact ionization by 
holes is much lower than that of electrons.  
The mean number μ of secondary electrons generated by the impact of an electron is 
small   μ<< 1, the positive feedback in the multiplication is so small that it can be 
neglected. The multiplication can thus be analyzed as a unidirectional cascade of 
electron impacts. By employing the Laplace probability generating function and 
giving a progressive index to the impacts in sequence we get 
 

 
and with equal impacts (i.e. uniform electric field) 
 

 
 
that is 

 
Since μ<<1  it is   vM2 ≈ 1 and we get 
 

 
 

F=2 is the lowest possible F for Si-APDs and is achieved at low gain level. The 
conclusion is confirmed by experiments on carefully designed APD devices 
operating at M<50. For comparison, recall that ordinary PMTs routinely offer F < 2 
at very high gain M>105.  
Silicon with electric field just above the ionization threshold is a particularly 
favorable case. In all other cases, the positive feedback in the avalanche process is 
remarkable, it cannot be neglected and has detrimental effect on the variance of the 
APD gain. The fluctuation of the electrons generated in an impact is not only 
amplified by the further electron impacts in the subsequent multiplication path. The 
holes that are generated in the impact travel back and re-inject the fluctuation in a 
previous step of the multiplication path.  This back-injection of fluctuations enhances 
the excess noise factor F, with an efficiency that increases with the k factor (the 
relative ionization efficiency of holes versus electrons). So, in Silicon the k factor 
markedly increases as the field is increased. Therefore, F markedly increases as the 
bias voltage of the APD is raised for increasing the gain. 
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The primary photocurrent (injected and amplified in the high field zone) can be 
carried by electrons (as in the device examples previously shown) or holes (as in 
devices with inverted polarity of the semiconductor layers). At a given gain M, the F 
value is lower if the forward branch is given by the most efficient carriers (electrons) 
and the backward branch in the loop is given by the less efficient carriers (holes).  
In conclusion: the best results with Silicon APDs are obtained with primary current 
carried by electrons. 
A thorough mathematical treatment of the avalanche multiplication is quite 
complicated and beyond the scope of this course. We will just comment some results 
of treatments reported in the literature. 
With some simplifying assumptions (uniform electric field; constant k value), it has 
been shown that the excess noise factor F with primary current of electrons is 
 

 
  
In cases with negligible positive feedback k=0, the equation confirms the result of 
the previous approximated analysis. 
In cases with full positive feedback (i.e. equally efficient carriers, as in GaAs and 
other III-V semiconductors) it is k≈1 and F increases as M 
 

 
 

Finally, in cases with intermediate feedback level it is 0<k<1 and the equation 
specifies how F increases with M with rate of rise that increases with k. 
The gain M of the APD is intended to bring signal (and noise) of the detector to a 
level higher than the noise of the following circuits, with the aim of attaining better 
sensitivity than a PN photodiode (which is limited by the circuit noise). However, 
when the voltage is raised to increase M also the variance of the gain fluctuations 
increases. At some level Mmax the effect of the gain fluctuations becomes greater than 
that of the circuit noise: increasing M beyond this level would be nonsense. This Mmax 
limit depends on the actual case (actual APD and circuit). 
It is the maximum factor Fmax tolerable in the case of interest that actually determines 
the Mmax level. In critical cases (typically InGaAs APDs, which have F≈M) a fairly 
high value Fmax turns out to be tolerable, even up to Fmax ≈ 10. 
Thanks to the low k factor, Silicon devices have the lowest excess noise among APDs 
and achieve the highest gain levels.  
Si-APD devices specially designed for low k have: 

 

F ≤ 2,5  up to M≈100 
 F ≤ 5     up to M≈500. 

 

Ordinary Si-APD devices have fairly lower performance, i.e. typically:  
 

F ≤ 4     up to M≈100. 
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APDs are currently developed with different materials, for example to obtain better 
detection efficiency in the near infrared range. Germanium and III-V semiconductors 
are typical examples. In Germanium, holes ionize more efficiently than electrons, i.e.  
k > 1. Instead of k, the reciprocal 1/k must be considered, and it is advisable to have 
the primary current carried by holes. 1/k in Ge-APDs increases with the electric field 
in a way similar to k in Si-APDs, but the values of 1/k in Ge are higher than k in Si. 
Fairly high useful gain has been demonstrated with Ge-APD devices, typically:  
 

F≤4  up to M≈50. 
 

On the other side, in III-V semiconductors (GaAs, InP, InAlAs, etc.) the ionization 
efficiencies of electrons and holes are equal (k=1) or at least comparable (k≈1). The 
positive feedback thus is very strong, and F increases as M. 
For InP-InGaAs and other III-V devices the useful gain range is quite limited, 
typically: 
   

F≤10 up to M≈10 
  
Nevertheless, InGaAs-APDs are in general preferred to Ge-APDs for detecting IR 
optical signals because they have lower dark-current (lower detector noise) and 
higher quantum detection efficiency, with cut-off extended to longer wavelengths 
(typically λ ≤ 1,7 μm). 
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    CHAPTER     24 

Single – Photon Avalanche 
Diodes  
 
 
Is it possible to reach single photon sensitivity with an integrable device? APD is 
not the most appropriate detector: indeed, we saw that its gain is not high enough 
in order to reach this goal. To bypass such limitation, a new kind of detector has 
been introduced: the Single Photon Avalanche Diode (SPAD). Its main feature is 
that it can work biased above the breakdown voltage of the p-n junction, in the so 
called Geiger-mode. 
 
 
24.1 Introduction 
During the last decades, special semiconductor detectors, called Single-Photon 
Avalanche Diodes (SPADs), were developed; some examples are shown in figure 
24.1. These devices, also called “Geiger-mode avalanche photodiodes” or “triggered-
avalanche detectors”, have been worked up and elaborated in order to detect single 
photons.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24.1: Examples of SPAD detectors and its integrated circuits 
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Basically, SPADs consist of a p-n junction reverse biased at a fixed overvoltage with 
respect to the breakdown voltage. When a photon impinges on the surface, it can be 
absorbed and it can generate an electron-hole pair. The two carriers can be 
accelerated by the electric field, and if any of them reaches a sufficient level of 
energy, it can trigger an avalanche as a consequence of the impact ionization 
phenomenon. Thanks to the positive feedback, a macroscopic current can be 
generated, and detected, in response to the absorption of a single photon.  
SPADs can be used in several fields: basic quantum mechanics, cryptography, 
astronomy, single molecule detection, luminescence microscopy, biology, chemistry, 
material science, fluorescent lifetime decays, optical fiber testing. Currently available 
devices are characterized by good properties such as low dark count rate, high photon 
detection efficiency (PDE) and excellent temporal resolution. All these features are 
addressed in the following paragraphs. 
But first, an advanced analysis of the limited sensitivity and limited Single-Photon 
Counting (SPC) capabilities of APDs in linear amplifying mode must be considered. 
 
24.2 APD limitations: sensitivity and SPC 
Before discussing the features of SPADs, let us discuss why there was the necessity 
to develop a new detector to achieve single-photon sensitivity. Which were the main 
limitations of APD in Single-Photon Counting? Let’s discuss them in detail. 
In order to achieve single-photon sensitivity, a high gain is required. In fact, the 
output of an APD is given by the number of primary (photogenerated) carriers 
multiplied by the gain. If we use a comparator with a threshold to discriminate the 
detection events, it is quite clear that the output of the APD output pulse due to a 
single-photon must be at least higher than the threshold, which is lower-limited by 
noise. Unfortunately, the gain of APD is a statistical process; therefore, it introduces 
some additional noise.  We have seen in the previous chapter that, in order to limit 
the F factor, i.e. the parameter that takes into account random fluctuations of the gain, 
and so to avoid an increment of the noise rms value, the gain must be kept low.  
In general, to achieve true single-photon sensitivity, two main requirements must be 
met: 

• Efficient rejection of noise, i.e. low probability of false detections due to 
the noise 

• Efficient detection of photon pulses, i.e. high probability of detecting the 
single-photon pulses, which can have variable amplitude with large 
statistical fluctuations 

With noise amplitude having gaussian distribution (most frequent case) with variance 
σn (rms value), the noise rejection threshold level must be at least Nnr ≥ 2,5σn, in order 
to keep below <1% the probability of false detection. This is graphically recalled in 
figure 24.2. 
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Figure 24.2: Gaussian distribution percentage: values higher than 2,5σn, occur with a probability lower 
than 1%. 
 
We have seen in previous chapters the typical acquisition scheme for a high-
impedance sensor, like photodetectors. So, considering that measurement chain, 
recall that the rms noise (in number of electrons) with an optimum filter can be 
computed as follows: 

sn	=	
7,8µ$+¶$+·

9
	

 
Where e- is the electron charge. Reasonable values for the capacitance and the 
electronics noise are: 
 

CL » 0,1 to 2 pF ® load capacitance 
Á𝑆E » 2 to 5 6�

√��
 ® series noise 

Á𝑆q » 0,01 to 0,1 /|
√��

 ® parallel noise  
 

With high-quality preamp we typically get sn » 40 to 120 e-. Taking some margin 
and considering 2,5sn, we need at least M  ≈ 100 to 300, which is not easily feasible 
with APDs. Furthermore, M just higher than the minimum is not sufficient for having 
single-photon pulses higher than the threshold: we will see that a much higher M  is 
necessary. 
Even without variations, the minimum APD gain that is needed can be higher than 
what we just computed, in case the setup exploits an input resistor RL; indeed, the 
resistor can introduce a dominant contribution to the noise. To have a better insight 
into this issue, let’s consider a typical amplification scheme, as the one reported in 
figure 24.3. The pulse signal coming from the sensor is read-out with a load resistance 
RL. CL takes into account all capacitive contributions, both due to the sensor and the 
acquisition circuit. Considering some typical values as RL=1kΩ and CL= 2 pF as an 
example, we get a pole with TA= RLCL. Noise is due to the  preamplifier and resistor, 
but considering some typical values for the preamplifier, the noise is usually 
dominated by the chosen resistor value (1kΩ). 
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Figure 24.3: Circuit configuration for noise and signal analysis 
 
Considering an amplifier with the same bandwidth of the RLCL network, in this 
configuration there are two poles at the same frequency. Let’s now proceed with the 
signal and noise analysis. 
 
The transfer function due to the presence of the two poles is: 
 

Hb = )
()!$V-;)

)
()!$V-!/)

 
 

Considering TA=Tpa, the two poles are at the same frequency and so in the Laplace 
domain: 
 

Hb = -
()!O-)*

 
 

Computing the Fourier Transform of Hb, the expression of the filter in time can be 
obtained: 
 

h(t) = (
-
	𝑒#

$
# 

 

With δ-like single-photon detector pulse of charge Qs, the voltage output signal is 
equal to  

vs = aK
3K

(
;K
𝑒1

L
MK 

having a maximum at t = TL:  
 

vs = aK
3K

b
C
 

 

The noise is dominated by the resistor in this case 
 

𝑣6	%gggg ≈ 	𝑆=\𝑅�%
1
8𝑇�

= 4𝐾𝑇𝑅�
1
8𝑇�

	 

Therefore the S/N results: 
𝑆
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The rms noise referred to the detector output in terms of charge is  
 

X𝑞6%ggg = 	
𝑒
√8
	Á𝑆=\Á𝑇� 

 

And in electron number: 

𝜎6 =	
¸¡A*
¹¹¹¹

¡ST
 »	1055	e- 

 
with this acquisition scheme, the necessary noise-rejection threshold level is 
 

𝑁62	 ≈ 2.5𝜎6 » 2600 e- 
 
This would require a gain that is extremely high for an APD. 
 
The exploitation of the optimum filter allows us to maximize the SNR; nevertheless, 
there are some other aspect that must be taken into account.  Recall that in the 
acquisition chain considered at the beginning of this discussion, the system 
parameters set the bandwidth of the optimum filter (low pass), with a time constant 
Tnc (due to the preamp noise and the input capacitance) that typically ranges from a 
few nanoseconds to some hundreds of nanoseconds. As a result, output pulses are 
fairly long and this brings drawbacks. 
In fact, the goal is not to detect just one photon but to detect more than one. A count 
loss can occur because of the overlap of the tail of one pulse and the following peak 
of another pulse. As sketched in figure 24.4, when the time interval between two 
photons is shorter than the output pulse width, pulse pile-up occurs (i.e. the two 
pulses overlap), the comparator is triggered only once and only one count can be 
recorded.  

Figure 24.4: Top graph: single photon output of an approximated optimum filter. Bottom graph: 
comparator output fed to the counter  
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Figure 24.5: Noise amplitude dispersion on a single pulse signal 
 
Photons occur randomly, so pile-up can occur; this situation causes a missing photon 
event and therefore a distorsion of the recorded signal. It is quite intuitive that the 
percentage of lost counts increases as the pulse-width is increased. 
To reduce count losses, we need to reduce the duration of the pulse tail; this could be 
achieved exploiting a filter with a higher bandwidth with respect to the optimum 
filter. Nevertheless, this solution would cause the collection of a higher amount of 
noise. We see that there is a tradeoff between speed, which can translate into signal 
loss in this case, and noise.  Moreover, in several applications also the arrival time of 
the signal is a parameter of interest, leading to another drawback. Considering the 
same readout scheme as before, i.e. the signal resulting from a single photon is 
detected by means of a comparator, the problem is noise and speed. Indeed, if we 
have a quite slow signal, the superimposed noise causes a crossing of the threshold 
with different delays causing the so-called time jitter. This scenario is shown in figure 
24.5. As a consequence, observing with high precision (» ps) the instant of arrival of 
the photon is not straightforward. The time jitter is inversely proportional to the 
derivative of the signal, which means that increasing the BW could reduce the jitter 
(figure 24.5). This new parameter takes part into the previously considered trade off. 
In order to reduce count-losses and time jitter, the APD pulses must be processed 
with a high filter bandwidth, typically higher than the optimum filter. This implies 
higher noise and, as consequence, a higher threshold value and a higher gain required 
to the APD.  Moreover, M just higher than the noise rejection threshold level Nnr 
would be enough if the APD gain were constant for all SP pulses, but this is not the 
case.  
Since the gain M has strong statistical fluctuations, a high excess noise factor F>>1, 
which is directly related to the relative variance of M, must be considered. 
 

 
Thus 

 
 

( )22 21 1M MF v Ms= + = +

1M M F M Fs = - » ×
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Figure 24.6: Statistical distribution of the gain M 
 
In figure. 24.6 it can be seen that the statistical distribution of the gain M is not 
Gaussian (as it is not symmetric with respect to the mean value 𝑀*), but it is skewed 
in favour of low-gain values. So the probability to have a gain higher than the mean 
value is lower than the probability to have a gain lower than 𝑀*. Therefore, with a 
mean gain 𝑀*  just above the noise rejection threshold, a major percentage of the SP 
pulses is  rejected. This downgrades the photon detection efficiency, i.e. the basic 
performance of the detector. 
In order to limit the reduction of detection efficiency due to the threshold, the mean 
gain 𝑀* should be higher than the noise rejection threshold Nnr by a factor G>>1. 
In the most favorable case (special Si-APD with optimum filtering), the value of 𝑀	ggg  
necessary for attaining the noise rejection threshold Nnr is near to the maximum 
available APD gain, but there is still some margin. In other cases (regular Si-APDs 
with wideband electronics) there is no margin at all. 
In conclusion, photon counting with linear amplifying APDs is possible only with 
special Si-APDs and with photon detection efficiency strongly reduced with respect 
to that obtained with the same APDs by measuring the analog current signal. 
 
24.2 SPAD: features and generalities  
The term Single-Photon Avalanche Diode (SPAD) defines a class of photodetectors 
able to detect low intensity signals (down to the single photon) and to acquire the 
time of the photon arrival with high temporal resolution. Its most important features 
are analyzed in the following paragraphs.  
 

Figure 24.7: Statistical distribution of the gain M, with the value of M̂ that should be chosen  
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24.2.1 I-V characteristic  
The I–V characteristic of a p-n junction engineered to work above the breakdown 
voltage is sketched in figure 24.8. As you can see, it is not a steady state curve: in 
fact, in the breakdown operating condition it has a bistable behavior. When reverse 
voltage above the breakdown is applied and no free carriers are present in the diode 
depletion region, the detector operates at Ia=0 (blue line). As soon as a carrier is 
injected into the depletion region, impact ionization may cause an avalanche, and the 
diode will follow the steady-state curve (red line).  
It is interesting to discuss how it is possible to trace the I-V characteristic above 
reported. SPAD devices, as all photon detector, are affected by dark count; this means 
that it is not possible to trace its bistable characteristic by simply applying a constant 
voltage. If we tried to use that approach, only the static characteristic (red line) can 
be detected because the avalanche is for sure activated due to the dark count rate. In 
order to detect also the curve in which Ia=0 (blue line) a fast and repetitive voltage 
scanning with a duration of about 10ms must be applied. In this scenario, we have 
that in some periods of the scanning no electrons are generated, thus, the avalance is 
not activated and is it possible to trace the branch Ia=0 (blue line); in some other 
periods an avalanche is triggered and the steady-state condition (red line) can be 
traced as well.  
Note that the current Ia has been considered positive in the cathode to anode direction. 
For this reason the reverse bias characteristic is placed in the first quadrant. 
 
24.2.2 Geiger-mode 
The fundamental difference between SPADs and APDs is that SPADs are 
specifically designed to operate with a reverse bias voltage well above the breakdown 
voltage. This kind of operation is also called Geiger-mode. In order to be able to 
operate in this regime, a diode should have uniform properties over the sensitive area: 
in particular, it must be free from defects causing local field concentration and lower 
breakdown voltage (the so-called microplasmas, due to metal precipitates, higher 
dopant concentration, etc. 

Figure 24.8: Bistable behavior of I-V characteristic 
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Figure 24.9: Geiger mode operation  
 
Bias supply voltage Vs exceeds the breakdown voltage VB of the junction by an 
amount called excess voltage Vexc, which has a major influence on the detector 
performance. When a photon arrives, the avalanche is triggered and a macroscopic 
current flow into the device. Then the avalanche must be quenched by pulling down 
Vd to (or below) VB in a passive or active way (see sections. 24.3, 24.4).  The 
quenching delay has to be minimized in order to limit the aferterpulsing effect (see 
section 24.6). Finally, the diode voltage Vd must be restored to Vs to make the sensor 
ready to detect another signal (Fig.24.9).  
Pulses are produced in SPADs also by the spontaneous thermal generation of single 
carriers in the diode junction and constitute a dark count rate (DCR) similar to that 
observed in PMTs. Low DCR is a basic requirement for an avalanche diode to be 
employed as SPAD.  
Various parameters characterizing the detector performance strongly depend on the 
excess bias: probability of avalanche triggering, hence the photon detection 
efficiency; amplitude of the avalanche current pulse; dark count rate; delay and time-
jitter of the electrical pulse with respect to the true arrival time of the photon. 
The breakdown voltage depends on the structure of the device and on doping levels.  
Thin devices (typically 1 μm) have lower breakdown voltage (15 to 40V), and so 
lower power dissipation, while thick devices (typically from 20 to 30 μm) have 
higher breakdown voltage (300 to 400V) and power dissipation. The fabrication of 
thick devices is usually more complicated, but they can provide better quantum 
efficiency.  
Breakdown voltage VB also strongly depends on junction temperature. At constant 
supply voltage VS, the increase of VB causes a decrease of excess bias voltage Vexc if 
a fixed bias voltage is applied. At a high counting rate, the mean power dissipation 
causes a significant temperature increase, particularly in SPAD’s with high VB. The 
effects on device performance are significant, therefore it is very important to 
stabilize the junction temperature in working conditions. 
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24.2.3 Equivalent circuit of the diode above breakdown 
In figure 24.10 the equivalent circuit of a SPAD is reported. When the diode is biased 
below the breakdown voltage VB, the switch S is always open: in fact, an avalanche 
can’t be triggered in these conditions. When the diode is biased above the breakdown 
voltage VB, the switch S could be open or closed: when the switch is closed, the 
avalanche current Ia can flow, so closing S is like triggering the avalanche in the diode 
and this is equivalent to a carrier injection or generation in the high-field region. On 
the contrary, an open switch corresponds to no current flowing into the detector: this 
can happen before an avalanche is triggered or when the avalanche is quenched 
pulling the detector voltage down to VB (or below). 
Cd is the junction capacitance while Ra is the resistance of the diode. The Ra value is 
given by the ratio between the derivatives of Vd and Ia, and it depends on the 
semiconductor device structure. It is typically lower than 500W for devices with a 
wide area and thick depletion layer, and it ranges from a few hundred ohms to various 
kilo ohms for devices with a small area and a thin junction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24.10: Equivalent circuit   

 
24.3 Passive Quenching Circuit (PQC) 
The avalanche mechanism is self-sustaining, meaning that an external circuit is 
required to stop the current flowing and restore the initial detector bias conditions 
that make it ready to detect another photon. Such a circuit is usually called quenching 
circuit. Its tasks include i) sensing of the leading edge of the avalanche current; ii) 
generation of a standard output pulse synchronous with the avalanche build-up; iii) 
quenching of the avalanche by lowering the bias down to or  below the breakdown 
voltage; iv) restoring the photodiode to the operative level where it is ready to detect 
another photon. Considering the aforementioned SPAD equivalent circuit, a passive 
quenching configuration (PQC) is here discussed. It basically consists in a high-
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resistive load RL (in the order of 1MΩ) connected in series to the SPAD, as shown in 
figure 24.11. 

 
Figure 24.11: Passive quenching circuit (PCQ) and its operation  
 
In this way, the avalanche current quenches itself by simply generating a voltage 
drop on the load RL: if the voltage drop is high enough, the diode voltage goes down 
to VB and the avalanche is no more self-sustaining since there is a high probability 
that no carrier flows in the depletion region for a while. To reach this situation the 
final current should be in the order of 50-100µA. 
Let’s analyze the circuit behavior looking at the graph of figure 24.11. As a starting 
condition, the switch S is opened, so no current flows in the circuit and the voltage 
drop across Cd is equal to Vs (Vd =Vk-Va=Vs), where Vk is the cathode voltage and 
Va is the anode voltage.  When a photon is detected, Ia starts to flow causing a voltage 
drop on the high load impedance RL: the diode voltage Vd falls down to the 
breakdown voltage and the avalanche is quenched. At this point the voltage on Cd 

is restored to the initial condition (Vs) with an exponential time constant given by 
RLCd. Since the switch S is opened when the avalanche is quenched, the small 
current carried by the load resistor RL flows into the diode capacitance, slowly 
recharging it. A photon arriving during the first part of the recovery transient is 
almost certainly lost, since the avalanche triggering probability is very low. The 
subsequent arriving photons have a progressively higher probability of triggering 
an avalanche. For this reason, the gradual recovery from VB to the diode bias voltage 
after each quenching can cause count loss in photon counting, reducing in this way 
the detection efficiency. The recovery transient does not always reach Vs. If a 
photon arrives in this time window, the avalanche current starts to flow and the 
voltage on Cd drops down again (figure 24.12). For this reason, at the beginning of 
the avalanche, the voltage on Cd is not always the same and the current-peaks 
amplitude can vary (figure 24.14). 
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Figure 24.12: Voltage and current behavior in PQC 
 
The more is the delay between peaks, the more is the current amplitude because Vd 
is bigger. In order to read an output pulse from a PQC it is possible to insert a low 
value resistance Rs (≈50Ω) between the diode and the ground of the circuit (figure 
24.13). The obtained pulse is an attenuated replica of the diode voltage waveform 
and it is therefore called voltage-mode output. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24.13: Circuit configuration to detect output pulse 
 
In conclusion, SPADs used with a PQC can be useful for applications with very small 
probability of occurrence of an event during recovery transients, such as applications 
with low dark-count rate, low count-rate of background photons and low count-rate 
of the signal photons. 
 
24.4 Active Quenching Circuit (AQC)  
Passive quenching is simple, but as we have seen, it has some drawbacks. In 
particular it suffers from: 
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• Long and not well defined deadtime, that is the exponential charge of the 
diode capacitance in order to recover towards the potential Va. 
 

• As a consequence of the previous problem, we will have normally a low 
maximum counting rate, below 100kc/s. 

 

• Finally, if a photon arrives during the voltage recovery, the arrival time 
measured can suffer of an increased delay and time-jitter with respect to the 
correct diode operation at Va. 

 
So, in order to avoid drawbacks causes by a slow recovery from avalanche pulses 
and exploit at the best the inherent performance of SPADs, a new approach was 
devised and implemented.  
The basic idea was simply to sense the rise of the avalanche pulse and react back on 
the SPAD, forcing, with a controlled bias-voltage source, the quenching and reset 
transitions in short times. 
Fig.24.14 illustrates the principle of the active quenching method. The rise of the 
avalanche pulse is sensed by a fast comparator whose output switches the bias voltage 
source Va to breakdown voltage VB or below. After an accurately controlled hold-off 
time, the bias voltage is switched back to operating level Va. A standard pulse 
synchronous to the avalanche rise is derived from the comparator output to be 

employed for photon counting and timing.  
 

Figure 24.14: Active Quenching Circuit (AQC) and its output 
 
The basic advantages offered by the AQC approach are:  
 

• Fast transitions from quenched state to operating level and vice versa. 
 

• Short and well-defined durations of the avalanche current and of the dead 
time. 

 

• Standard output pulses. 
 

• High counting rate, above 1Mc/s, since we have no more long recovery 
time to Va 
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The introduction of the Active Quenching Circuit (AQC) opened the way to practical 
application of SPADs.  
 
24.5 Comparison SPAD/APD and SPAD/PMT 
Let’s analyze the main differences between SPADs and APDs. The main features of 
the Avalanche Photodiode can be resumed as follows: 
 

• It’s biased close to but below the breakdown voltage 
• It works in a linear-mode as an amplifier with a limited gain well below 1000. 
• Its output is an analog one  

On the contrary, the Single-Photon Avalanche Diode has the following 
characteristics: 
 

• It’s biased in the so-called Geiger-mode, well above the breakdown voltage 
(from 10 to 50V in thin-junction SPADs; from 200 to 500V in thick-junction 
SPADs) 

• It’s a bistable device since it can work with no current when no photon is 
impinging on the sensor, or with macroscopic current when the avalanche is 
activated by the generation of carriers.  

• Its output is digital, it can assume just an high or low state. 
• In Geiger-mode, so with a bias voltage well above the breakdown, the gain is 

meaningless. 

Figure 24.15: Different working region of APD and SPAD 
 
SPAD shows some important advantage also compared to PTM in terms of: 
 

• Miniaturization of the device, so smaller dimensions, lower voltages, lower 
power consumption, ruggedness, bulkiness, etc. 
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• Higher photon detection efficiency, since they do not rely on electron emission 
in vacuum from a photocathode as do PMTs, but on the internal photoelectric 
effect. It can be seen in figure 24.16, where the efficiency in the overall visible 
spectrum (390 nm – 700 nm) of SPAD is clearly higher, particularly in the red 
and near-infrared range 

• Better photon timing: regarding the PMT, different factors are involved in the 
generation of transit time jitter, such as the distance from the electrode and the 
dynode and the initial random velocity of the electrons, so geometry and the 
potentials of the electrodes should be carefully designed. Classical values of 
FWHM for PMT ranges from a few hundreds of ps to a few ns. The FWHM for 
a fast planar SPAD is very low, in the order of some ps (figure 24.17). 

• Comparable or lower noise, only if the area is not taken into consideration, 
otherwise PMT has a better dark count rate. 

Figure 24.16: Photon detection efficiency vs wavelength in different technologies for PMT and SPAD 
 

 
Figure 24.17 Timing Jitter of Fast Planar SPAD 
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In conclusion, if the area and the compactness is not important for a specific 
application, the optimal result is obtained by the PMT. This is due to the fact that its 
sensitive area can be enlarged until consistent values are reached, without increasing 
too much the noise. However the new trend is to develop integrable and compact 
devices so the SPAD has now become the best choice in many applications. 
 
24.6 SPAD noise: dark count 
SPAD is affected by an internal noise that must be considered for a correct analysis: 
the dark count. Dark count is the average rate of registered counts in a dark 
environment, without any incident light. This determines the minimum count rate at 
which the signal is dominantly caused by real photons.   
Dark counts are due to carries thermally generated within the SPAD junction, so the 
dark count rate increases with temperature (figure 24.18, left). Thermal generation 
effects produce current pulses even in the absence of illumination, and the Poissonian 
fluctuation of these dark counts represents the internal noise source of the detector. 
The SPAD dark count rate increases also with excess bias voltage (figure 24.18, 
right) Vexc because of two effects, namely, field-assisted enhancement of the emission 
rate from generation centers and an increase of the avalanche triggering probability. 
 

 
Figure 24.18: Dark count vs temperature (left) and Dark Count vs Excess bias voltage (right) 

 
Both the quality of the material and the technological process used in the device 
fabrication have strong impact on the density of deep energy levels and therefore on 
the generation rate. Metal contamination may occur during silicon handling, high 
temperature heat treatments or ion implantations. Unintentional contaminants, Fe, 
Cu, Ti, Ni are usually found in silicon in concentration of about 1011 to 1012 cm-3. 
Poole-Frenkel and trap-assisted tunneling effects that occur at high electric fields 
(>105 V/cm), can greatly enhance the emission rate of deep energy levels (field-
enhancement generation). Tunneling probability of carriers is, at first order, 
exponentially dependent on the energy barrier that they have to pass through. 
Tunnel-assisted generation is not reduced by lowering the temperature and therefore 
sets a limit to the reduction of the dark count rate obtained by cooling the detector. 
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Figure 24.19: Example of thermal and tunneling carrier generation 
 
Detector noise is also enhanced by a secondary effect called afterpulsing.  During the 
avalanche some carriers are captured by deep levels in the junction depletion layer 
and subsequently released with a statistically fluctuating delay, whose mean value 
depends on the deep levels actually involved. Released carriers can retrigger the 
avalanche, generating afterpulses correlated with a previous avalanche pulse. The 
number of carriers captured during an avalanche pulse increases with the total 
number of carriers crossing the junction, that is, with the total charge of the avalanche 
pulse. Therefore, afterpulsing increases with the delay of avalanche quenching and 
with the current intensity, which is proportional to excess bias voltage Vexc. 

 
Figure 24.20: Probability density of afterpulse generation after  an avalanche in a 100μm-diameter silicon 
SPAD operating at room temperature 
 
24.7 Prototype SPAD structure 
The first SPAD configuration was introduced at the Shockley laboratory in the early 
1960’s. The approach was to fabricate many n+p junctions with very small diameter 
(a few microns) sorrounded by a deeply diffused guard ring and then select the few 
devices that didn’t contain extended defects. Diffusing a shallow n+ layer in a p bulk 
substrate two key features are reached: a low voltage operation (»30V), with the 
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benefit of a lower power consumption during the avalanche, and the fabrication of 
devices on a silicon wafer with a planar technology. The planar process is a 
manufacturing process used in the semiconductor industry to build individual 
components of a transistor, and in turn, connect those transistors together. In this way 
it’s possible to integrate SPADs with other detectors and circuits. 

Figure 24.21: Planar technology implementation of SPAD (no epitaxy) 
 
This planar configuration shown some weaknesses over time. In fact the deep guard-
ring diffusion compromized the detection efficiency. It wasn’t uniform in the active 
zone, and this introduced a strong limit in the diameter of the active n+p junction, 
limiting also the scalability of the structure.  
To overcome the drawbacks of early planar structures, the planar epitaxial devices 
were introduced in 1988 (figure 24.22). This structure fabrication starts from an n-
type substrate on top of which a p+ / p- double-epitaxial layer is grown. The resulting 
p-n junction limits the neutral region from which carriers are collected, this effect 
reduces also the diffusion tail. The former guard ring is now substituted by a virtual 
one; this concept is based on the locally enhanced, in the central region of the shalow 
n+p junction, of the electric field throught an higher p-doping. In this way the active 
region of the device is defined. Finally, a n-type diffusion region completely 
surrounds the detector. As result of the process the SPAD is enclosed in a p-well 
delimited by the isolation (n-type) and by the substrate allowing it to be electrically 
insulated from other devices.  

Figure 24.22:  p-p+-n Double-Epitaxial SPAD structure 
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The continuous improvement of the planar epitaxial technology makes it possible an 
increasing of the active area diameters (up to 500µm) and the achievement of an 
optimum compromise between breakdown voltage (still »30V), total afterpulsing 
probability (»1% at -15°C) and time jitter  (better than 40ps FWHM, full width half 
maximum). 

 
Figure 24.23: Tail of a planar technology devices (left), tail of a Double-Epitaxial SPAD structure (right) 
 
Figure 24.23 highlights how the diffusion tail is strongly reduced. In fact, on the left 
side the old technology’s response is analyzed and the diffusion tail lasts »100ns. 
Instead on the right side a great improvement is reached with the epitaxial 
technology, in which the diffusion tail lasts »3-5ns. 
The lifetime of the tail depends on the square value of the neutral region thickness:  

𝜏 =
𝑤H%

𝜋%𝐷6
 

However, reducing the neutral region brings to a partially reduction of the detection 
efficiency, because the carriers in this region can diffuse until the depletion region. 
The device has to be customized taking this problem into consideration in order to 
reach the desired goal.  
 
24.8 SPAD array 
Two approaches are followed nowadays in SPAD detector technology: standard 
CMOS technology or custom one. The first one refers to the use of standard design 
for digital electronic, based on ultra-scaled complementary and symmetrical pairs of 
p-type and n-type MOSFET. The second refers to the use of a fully custom 
technology where any lithographic step can be modified to achieve better 
performance. 
Without any technology customization, the goal is to obtain an array of SPADs 
having a low dark-count rate, high photon-detection probability, low afterpulsing 
probability, and acceptable timing jitter and breakdown voltage. Standard CMOS 
approach uses small pixel diameter (<50μm), introduces large numbers of pixel 
(>100 pixel) and takes advantage of smart-pixel architecture that has in-pixel 
electronic circuitry (figure 24.24).  
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Figure 24.24: Example of pixel with SPAD and sorrounding electronics 
 
In this configuration a fully parallel operation is possible in terms of pixel Single 
Photon Imager (High frame rate single photon imaging), or can also act as a “Single 
pixel” large area detector, that is a cooperation between all pixels in order to obtain 
a better performance (low dead time, high count rate and photon number resolution). 
A critical factor is the cost-down without sacrificing the system performance. 
Furthermore, at device level, CMOS SPAD’s performance could not be optimized 
with adjustable layer arrangement and doping profile, which is in general not free, 
even not possible, for the existing CMOS technology. 
For the applications where high photon-detection efficiency is requested, SPAD 
arrays are fabricated using a custom process, instead. In fact, this approach allows 
the design of a high-quality pixel array with wide pixel diameter (>100µm). In this 
case, the integration with CMOS circuitry is more difficult, since only a limited 
number of steps are implemented, so normally a moderate number of pixel is 
introduced (<100 pixels). 
 
24.9 Silicon Photomultiplier 
The Silicon Photomultiplier is a detector based on array of SPADs, where each pixel 
has its own load resistance (RL ≈100kΩ) and capacitance (CL≈100 fF). All pixels have 
a common ground terminal, connected to a low resistance external load, (Rs = 50Ω) 
(figure 24.25, left). All the pixels currents flow in this terminal and they are added 
among them. In this way the output amplitude is proportional to the excited 
photodetectors and to the number of incident photons (figure 24.25, right). The 
detector pixels are individually triggered by incident photons, quenched by the 
discharge of pixel capacitance and reset by the recharge of CL with time constant 
RLCL. 
The Silicon Photomultiplier provides the low-light detection capabilities of the PMT 
while offering all the benefits of a microelectronic device. The SiPM features low-
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voltage operation, insensitivity to magnetic fields, mechanical robustness and 
excellent uniformity of response. The SiPM is capable of discriminating the precise 
number of photons detected as distinct, discrete levels at the output node as a function 
of the number of triggered cells. 
However, SiPMs have also drawbacks with respect to PMTs. For example, the fill 
factor (percentage of the sensor surface area that is sensitive to light, active area/ total 
area) it is not 100% and this brings to a reduction of the photon detection efficiency 
because the active area. Furthermore, SiPMs have much higher dark current density 
over the active area. 
 

 
Figure 24.25: Equivalent circuit configuration Silicon PhotonMultiplier (left), currents at different number 
of photons detected and excited photodetectors (right) 
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    CHAPTER     25 

Temperature Sensors 
Temperature is one of the most important and commonly measured physical 
quantities. Consequently, temperature sensors cover the largest segment of the 
sensor market by volume. Moreover, many of the physical phenomena being sensed 
and measured (e.g., humidity, pressure, flow, stress and gas concentration) have 
some temperature dependence and therefore, need to be compensated for 
temperature variations. Major applications of temperature sensors are thus focused 
at sensing temperature for thermal compensation. In this chapter, four types of 
temperature sensors are examined: Thermocouple (TC), Resistive Temperature 
Detector (RTD) and  Thermistors.  
 
25.1 Thermocouples (TC) 
Thermocouples are probably the most diffused temperature sensors. They are 
cheaper than other temperature-measuring devices and offer the widest temperature 
range, even though they are characterized by low accuracy and require calibration. 
The thermocouple consists of two wires of different metals welded together at the 
ends.  In the following discussion, two separated metals at equal temperature TR are 
considered. The two metals A and B are characterized by their work functions ΦA 
and ΦB (the minimum thermodynamic work needed to remove an electron from a 
solid to a point in the vacuum outside the solid surface). 

 
Figure 25.1: Two metals at the same temperature TR, a) separated; b) in contact 
 
When the two metals are put in contact, electrons in higher energy states in metal A 
move to free states at lower energy in metal B. Thus, B gets negative charge and A 
positive charge; a voltage drop is established between A and B and the difference 

a) b) 



CHAPTER 25     

 

 336 

of Fermi levels is reduced. The equilibrium is reached when the Fermi levels in A 
and B are equal. The potential difference VAB at the A-B contact is given by 
  

𝑉|9 =
º;#ºL
#¡

 
 
Considering a chain of metal wires in contact (for example A – B – A), all at the same 
temperature TR, equilibrium is reached when all metals have equal Fermi level, as 
before. It is worth noting that the potential difference between the opposite ends of a 
metal sequence does not depend on the intermediate metals, but only on the end 
metals. In fact, if the boundary metals are equal, the end-to-end potential difference 
is nil.The situation is different if one of the junctions is characterized by a different 
temperature TS. This effect is exploited in the working principle of the thermocouple. 
 
25.1.1 Seebeck Effect 
Thermoelectric effects consist in the conversion of a temperature gradient, that a 
conductor experiences, to a voltage and vice versa. This conversion can be performed 
by a thermocouple. Thermoelectric effects include different phenomena, as the 
Seebeck, the Peltier and the Thomson effect.  
The Seebeck effect is the conversion of a temperature difference directly into 
electricity at the junction of different types of wires, i.e. conductors; on the other 
hand, the Peltier Effect consists in the generation of a temperature difference by 
making a current flowing between two junctions; finally, the Thomson effect consists 
in the absorption or generation of heat when electric current passes through a circuit 
composed of a single material that has a temperature difference along its length. 
In a thermocouple, the flow of electric current in the wires is negligible, hence it 
exploits only the Seebeck effect, which is present also with zero current flowing, i.e. 
in open circuit. As an example of the Seebeck effect, let’s consider a wire with higher 
temperature TS at one end and lower TR at the other end. At higher temperature, the 
random thermal motion of free electrons is enhanced, and electrons diffuse away 
from the hot region. Since the lattice ion space charge is permanent, a net space 
charge builds up (positive in the hot region, negative in the cold region), which 
generates a potential variation along the wires. A potential difference between the 
metal ends is established, which depends on the temperature difference ΔT =TS-TR  
and on the properties concerning the free carrier motion, which are different in 
different metals. 
The magnitude of the voltage produced between the two junctions depends on the 
material and on the temperature difference ΔT through the linear relationship defining 
the Seebeck coefficient S, specific for the material. 
For each material, S is defined as the potential difference along the metal wire per 
unit temperature difference  

𝑆 = K�
K-
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The value (and the sign) of S depends on the metal properties concerning the free 
carrier dynamics; it is in a range from about 1 μV/K to a few 10 μV/K. 
The voltage difference between two points at different temperatures TR  and TS in a 
metal is given by: 

 ∆𝑉 = 𝑉J − 𝑉\ = ∫ 𝑆𝑑𝑇-7
--

 
 

For the metals currently employed in thermocouples, the Seebeck coefficient S is 
different for different metals and it has just small variations with the temperature.  
Therefore, the Seebeck voltage ΔVSR is approximately proportional to 
ΔT =TS-TR , with different coefficient S for different metals. 
 
25.1.2 Thermocouple Principle 
In the chain of metals previously considered isothermal at temperature TR, let us now 
bring one of the A-B junctions at a different temperature TS, leaving the rest at TR; 
as a result, a potential difference ΔV21= V2-V1=VT is established at the end terminals. 

 
Figure 25.2: Potential difference at the junction ends 
 
VT is given by the sum of the potential differences due to the Seebeck effect in the A 
and B wires contiguous to the junction at temperature TS. 

 

𝑉- = 𝑉% − 𝑉) = (𝑉J − 𝑉\)9 + (𝑉\ − 𝑉J)| = & 𝑆9𝑑𝑇 + & 𝑆|𝑑𝑇
--

-7

-7

--
 

𝑉- = & (𝑆9 − 𝑆|)𝑑𝑇
-7

--
 

 
If SA and SB are approximately constant in the temperature range of TR and TS, the 
dependence of voltage from temperature can be considered linear and the integral can 
be simplified in the following way: 
 

𝑉- = 𝑉% − 𝑉) ≈ (𝑆9 − 𝑆|)(𝑇J − 𝑇\) = 𝑆9|(𝑇J − 𝑇\) 
 

where SBA is the difference between the two Seebeck coefficients. 
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Under the hypothesis of operating in a linear range and if TR is a constant and known 
value, the potential difference measured between the junctions can be converted in a 
temperature difference ΔT and the TS value is obtained: 
 

∆𝑇 = 𝑇J − 𝑇\ = 𝑉- 𝑆9|⁄  
 

𝑇J = ∆𝑇 + 𝑇\ = 𝑉- 𝑆9|⁄ + 𝑇\  

  
Therefore, the junction behaves as a temperature sensing device. Thermocouples are 
employed over a wide temperature range, from 0°C to 1000°C, and down to negative 
temperatures, but the behavior of voltage versus temperature can become 
significantly nonlinear. For this reason, TC manufacturers provide calibration plots: 
they show the behavior of VT versus temperature, measured with reference to 
TR0=0°C (at the water triple point, liquid-ice-vapour in thermal equilibrium in a 
dewar vessel). About negative temperature, the nonlinearity in the TC behavior is 
even more marked, since the Seebeck coefficient decreases with temperature. Thus, 
thermocouples are not efficient for cryogenic measurements. 
In figure 25.3 a calibration plot is reported, with curves related to the most diffused 
typologies of TCs. 
 

 
Figure 25.3: Calibration plot 
 
25.1.3 TC operation in nonlinear range 
Using calibration tables, a thermocouple can be well exploited also in a range of 
nonlinear voltage-temperature behavior. The temperature difference ΔT=TS – TR0 is 
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directly obtained from the measurement of the potential difference VT by employing 
the nonlinear calibration plot. 
 

 
Figure 25.4: Calibration plot for a type J thermocouple 

 
If the reference temperature TR is different from the TR0 in the calibration, the 
measured voltage VT must be corrected before using the calibration table.  

1) In the TC Calibration, VT0(TS) is measured with reference to TR0=0°C, while 
in the TC Operation VT(TS) is measured with respect to a different 
temperature TR. Therefore, to obtain TS, we should read from the plot the 
value VR=VT0(TR). 

2) The value VT measured in operation is identified on the plot. 
3) VR + VT = VT0(TS) 
4) The correct value of TS can now be extracted. 

 
It can be noticed that accuracy and precision of the temperature measurement are 
limited by the knowledge of the reference temperature TR. Operating with the 
reference junction at standard temperature TR0 is a technically sound approach, but 
the set-up which must be used to establish and maintain accurately TR0 is quite 
complex and is often unsuitable to practical applications. An option is to use a 
thermostat at TR > TR0 = 0°C; the value of TR is measured with a precise auxiliary 
thermosensor and controlled in a feedback loop with a heater. Since the control loop 
must operate in a narrow range of temperature, a Resistive Temperature Detector 
(RTD, see paragraph 25.2) is suitable. 
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25.1.4 Reference Junction and Input Compensation 
The terminals of the thermocouple have to be connected to an electronic circuit to 
read the differential voltage VT: a differential preamplifier is required. This 
connection introduces an additional junction of different materials, which brings an 
unwanted contribution to the voltage, impairing the measurement. 
 

Figure 25.5: Compensation with unregulated thermostatic enclosure 
 
This contribution can be cancelled if the two junctions A-metal/Copper are held at 
the same temperature Tj, even if the value of Tj is unknown. The Seebeck voltages of 
the two couples A-metal/Copper have the same value but opposite sense in the circuit, 
so they cancel out. This solution, achieved by putting the input contacts in a 
thermostatic enclosure, provides good results even without regulation. 
Another possibility is the Reference Input Configuration. 
 

 
Figure 25.6: Compensation with reference input configuration 
 
A regulated thermostatic enclosure is used to keep the two junctions at the same 
known temperature. The enclosure can be set to a reference TR or it can be left free 
to follow the ambient temperature, but it is continuously measured, so that each 
measurement takes into account the actual value of TR. Using this configuration, the 
second junction A/B acting as a reference can be avoided, because the input junction 
itself acts as a reference. It can be easily verified that when the thermometric junction 
A/B is at temperature TR, the end potential difference is zero and the chain is 
isothermal. 
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25.1.5 Operation with TC Remote from Electronics 
The wires that connect a thermocouple to the following electronic circuitry can be 
several meter long if the sensor has to be placed far from the electronics: some 
examples are the distributed temperature controls in industrial workshops or the 
measure of high temperature in furnaces. As we have seen before, a regulation of the 
reference temperature TR is needed, and this control must be implemented far enough 
from the object of the measurement. Thus, the long connections cannot be made in 
copper, but the same metals adopted in the TC have to be used. 
 

 
Figure 25.7: TC remote from electronics 
 
Furthermore, the two metals of a TC have different and fairly high resistivity, while 
the long connection wires have small section (to reduce heat transmission as well as 
cost and space). As a result, the connection wires are typically characterized by fairly 
high resistances, in the order of hundreds Ohm, and remarkably different values. This 
difference in the resistances causes problems in thermocouples, as the ground 
potential differences due to the operation remote from the associated circuit. 
 
25.1.6 Electronics associated to the sensor 
As said before, a differential preamplifier is needed to read the voltage at the ends of 
a thermocouple. In this paragraph, the value of parameters required for the circuitry 
are examined. The preamplifier must have CMRR sufficiently high to keep within 
acceptable limit ΔVC,max the error caused by VCM in the measurement of VT. In fact, 
the ground potential difference VCM from circuit to remote sensor is often remarkable, 
in the order of tens of Volts.  

Figure 25.8: Differential configuration 
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𝐶𝑀𝑅𝑅 ≥ 𝑉]� ∆𝑉],<`,⁄  
 

The ΔVC,max value is set by the limit ΔTmax, the maximum error in temperature that 
can be tolerated in the measurement: 
 

∆𝑉],<`, = 𝑆 ∙ ∆𝑇<`,  
 

S is the Seebeck coefficient of the employed TC. In most cases the requirements for 
the Common Mode Rejection Ratio are fairly stringent, around 100-120 dB. 
Another requirement regards the differential resistance at the amplifier input 
terminals: the non-negligible resistance of the connection wires causes a signal loss, 
that must be maintained lower than a minimum acceptable value. 
 

∆𝑉- = 𝑉- − 𝑉r = 𝑉-
𝑅a| + 𝑅a9

𝑅r//2𝑅] + 𝑅a|+𝑅a9
≈ 𝑉-

𝑅a|+𝑅a9
𝑅r

 

 
∆𝑉-
𝑉-

=
𝑅a| + 𝑅a9

𝑅r
<
∆𝑇<`,
𝑇 − 𝑇\

 

𝑅r > (𝑅a| + 𝑅a9)
-#--
∆-0/U

 

 
Usually the value of RD required is about a few MΩ; if 𝑅r > 𝑠𝑜𝑚𝑒	𝑀Ω , it can be 
considered ideal, therefore approximated to an infinite resistance. 
Since the resistances of the two wires are different, they cause different voltage drops 
on the wires and generate a fake differential signal. This signal must be lower than 
the maximum allowed error ΔVC,max. This consideration translates into a minimum 
acceptable value for the common-mode input resistance RC. 

 
Figure 25.9: Equivalent circuit for computation of common mode input signal 
 

𝐼a| =
𝑉]�

𝑅] + 𝑅a|
≈
𝑉]�
𝑅]

 

𝐼a9 =
𝑉]�

𝑅] + 𝑅a9
≈
𝑉]�
𝑅]
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𝐼a| ≈ 𝐼a9 ≈ 𝐼a =
𝑉]�
𝑅]

 

∆𝑉r] = 𝐼a|𝑅a| − 𝐼a9𝑅a9 = 𝑉]�
𝑅a| − 𝑅a9

𝑅]
 

𝑅] > (𝑅a| − 𝑅a9)	
𝑉]�

∆𝑉r],<`,
 

 
In many cases a very high value of RC is required, in the order of hundreds of MΩ. 
An Instrumentation Amplifier may be the appropriate solution. 
 
25.1.7 Noise 
In figure 25.10 all the noise equivalent generators are put in evidence.  

 
Figure 25.10: Equivalent circuit for noise computation 
 
The sensor is a metal resistor, so it does not add a relevant contribution to flicker 
noise. The sensor resistance RwA + RwB, usually a few hundreds of Ohms, are 
characterized by an equivalent noise voltage generator in the range  
 

X𝑆$ ≈ 1		𝑡𝑜	 10𝑛𝑉 √𝐻𝑧⁄  

 
This contribution has to be considered as well as the amplifier noise. Anyway, in 
many cases the dominant contribution is given by the amplifier voltage noise, while 
SiA is usually negligible. The amplifier is characterized by 1/f noise components as 
well. This contribution has to be carefully treated, because temperature is in general 
a very slow signal, with a low-frequency bandwidth. 
To reduce the effect of flicker noise on the measurement of TC signals, modulation 
is a good choice. Modulator circuits cannot be used since TC signals may not be 
higher than the modulator flicker noise. Switches are instead suitable. 
Switches with the lowest noise are the electromechanical metal-contact ones; a 
drawback is represented by the limited range of operating frequencies (the switching 
frequency can be chosen up to a few hundreds of Hz).  
 



CHAPTER 25     

 

 344 

 
Figure 25.11: Signal modulation with switches 
 
Alternatively, electronic switches like MOSFETs and diodes can operate up to high 
frequencies (even MHz). Unfortunately, they are characterized by higher noise than 
metal switches; anyway, MOSFETs in switching operation have lower noise than in 
linear operation (amplifiers) and can be used for TC signal modulation. 
After the modulation, a high-performance filtering solution is represented by a Lock-
In Amplifier. 
 
25.1.8 TC Dynamic Response 
The response of a thermocouple to a step in the temperature to be measured is 
determined by the thermal transient of the TC junction. The temperature-to-voltage 
transfer function of the TC is a low-pass filter. 
A fair approximation is to consider the TC in linear operation as a single-pole low-
pass filter. Similarly, to what happens for thermal photodetectors, the thermal 
transient is characterized by two parameters: the thermal resistance RT and heat 
capacitance CT. 

RT is the resistance between the object measured and the TC junction; CT is the 
capacitance of the TC junction. Their values strongly depend on the fabrication 
technologies of TCs and vary from case to case.  
The time constant τ = RTCT of the single pole response of the TC has anyway a value 
remarkably longer than usual in electronic filters and can widely vary in the different 
practical cases, from millisecond range to seconds. 
 
25.1.9 Applications 
Table 25.1 reports the most diffused topologies of thermocouples. Each type is 
characterized by a value of sensitivity, a temperature range and a color code. 
Actually, different internationally recognized standards have been developed. In 
table 25.1 the United States ASTM and ANSI standard is reported. 
Thermocouples are widely used in science and industry. Applications include 
temperature measurement for kilns, gas turbine exhaust, diesel engines, and other 
industrial processes. Thermocouples are also used in houses, offices and businesses 
as the temperature sensors in thermostats, and also as flame sensors in safety 
devices for gas-powered appliances. 



Temperature sensors 

 345 

It can be noticed from table 25.1 that thermocouples of type R, S and B all use alloys 
of platinum and rhodium/platinum. These are among the most stable thermocouples, 
but they have lower sensitivity than other types, approximately 10 µV/°C. They are 
usually employed only for high-temperature measurements due to their high cost and 
low sensitivity. 
Type K is the most common general-purpose thermocouple with a sensitivity of 
approximately 42 µV/°C. It is inexpensive, and a wide variety of probes are 
available. 
Type J is instead characterized by a more restricted range of temperature than type K 
but it presents a higher resistivity. 
Thermocouples of type T are often used as a differential measurement, since only 
copper wire touches the probe. 
 

 
Table 25.1: Most common Termocouples 
 
25.2 Resistive Temperature Detectors (RTD) 
The RTD is one of the most common temperature sensors used in many applications 
as well as thermocouples. Its working principle is based on the variation of the 
resistivity of a metal with the temperature according to a linear equation: 
 

𝜌(𝑇) = 𝜌.∙[1 + 𝛼(𝑇 − 𝑇.)] 
 

 where T is the temperature we want to measure, T0 is the reference temperature, 𝜌(𝑇) 
is the resistivity at T and  𝜌.∙ at T0. 
The second Ohm's law says that the resistance of a conductor is directly 
proportional to its length L and inversely proportional to its section S: 
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𝑅 = 𝜌 �
J
   

 

Combining together the two expressions, the relationship between resistance and 
temperature can be obtained, at a first order approximation: 
 

𝑅(𝑇) = 𝑅.∙[1 + 𝛼(𝑇 − 𝑇.)] 
  

where 𝛼 is the temperature coefficient of resistance for the conductor material. With 
a good approximation, the resistance has a linear behavior on wide T range for 
various metals. 
Calling ∆𝑇 = (𝑇 − 𝑇.) and ∆𝑅J = (𝑅J − 𝑅.)   is possible to define  ∆𝑅J = 𝛼∆𝑇𝑅., 
therefore the variation of resistance is connected to the variation of the temperature 
through the α coefficient, that is around ≈ 4 ∙ 10#P	for metals currently employed in 
RTDs. The value of α for some metals typically used in RTDs is reported in the 
following table. 

 
RTD sensors usually are made by pure materials such as copper, nickel, tungsten or 
platinum. Usually this kind of sensors are used for small range of temperature, from 
less than 0℃ to some hundred degrees; for higher temperatures, instead, 
thermocouples are employed. It is useful to represent the curve of the relative 
variation of resistance as function of temperature. Platinum is chemically inert and 
resistant to contaminations; in fact, the α coefficient, whose value can change with 
impurities, is quite constant. As a result, the characteristic of Platinum is linear with 
good approximation from -200℃ to about 500℃ and with small deviation from 
linearity up to 800℃.  
All these properties make platinum the best material for RTD sensors. Common RTD 
sensing elements made of platinum are PT100 and PT1000; the value of their 
resistance is respectively 100Ω and 1000Ω at reference temperature (0℃). Although 
the platinum is a quite expensive material, the amount used in the sensor is really 
small, consequently the cost of the overall sensor is not high.  
Pt is the material of choice in many cases and is used in official metrology to define 
the International Practical Temperature Scale (from 13,81 K to 903,89 K).  
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Figure 25.12: Plot of relative variation of resistance as function of temperature 
 
The RTD fabrication technology is not so simple. Since the α coefficient is very 
small, the resistance employed should have a big value, like some tens or some 
hundreds of ohms, in order to be able to measure a significant variation of relative 
resistance. One of the big problems of RTDs is not the electronics or the sensor itself, 
but the connection of the sensor to the object to be measured without introducing 
errors during the reading phase. The package must be compact and ensure good 
thermal contact between the resistor and the object measured; good electrical 
isolation is also needed: insulators such as PVC or silicone rubber are used at 
temperatures above T≈ 250℃ and grass fiber or ceramic for higher temperatures.  
Many RTD sensors consist of a long and thin wire wrapped in spiral around a ceramic 
or glass core. The mechanical structure must avoid strain of the metal wire due to 
thermal expansion or contraction, otherwise the piezoresistive effect would cause 
unwanted resistance variations and consequent errors in ∆𝑇.  
RTDs do not generate an electrical signal, so a power supply is necessary to get 
current and voltage in the sensor; the higher is the bias voltage, the higher is the 
signal, but some problems can arise: above all, Joule self-heating is the main 
limitation for these kinds of sensors. This effect leads to an increase of power 
consumption and could modify the temperature of the object under test. The only 
solution is to limit the maximum power PS,max  below the threshold that the system 
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can tolerate, depending on the final application and on the thermal conductivity both 
of the sensor and of the object.  
 

𝑃J =
�7*

\7
                                        𝑃J ≤ 𝑃J,<`,      

 

Hence, 𝑉J ≤ Á𝑅J ∙ 𝑃J,<`, is the value of the maximum voltage allowed in the RTD.  

Typical value of the sensor resistance is RS ≈100Ω and power PS,max ≈100µW, thus 
the maximum value for the bias voltage is around 100mV, that definitely leads to 
small voltage variations.  
 

25.3 Circuit for measurement 
In modern electronics, a simple and practical approach to measure the variation of 
temperature uses a current generator and a voltmeter: 

 
 
Figure 25.13: RTD operation at constant current 
 
RS is biased with a constant current generator IS, then the voltage VS across RS is 
measured and at any temperature T, it is exactly proportional to the sensor resistance. 
The variation of voltage ∆𝑉J consists just in the difference between the measured 
value of VS and the value of the voltage across RS at the reference temperature (0℃), 
VS0; ∆𝑉J gives an accurate measure of ∆𝑅J, that is a precisely known function of   
∆𝑇 = 𝑇 − 𝑇.   

 𝑉J. = 𝑅.𝐼J                ∆𝑅J = 𝑓(∆𝑇) ≈ 𝛼𝑅.∆𝑇 
 

∆𝑉J = 𝑉J − 𝑉J. = 𝐼J ∙ ∆𝑅J = 𝑉J.
∆\7
\G

≈ 𝑉J.𝛼∆𝑇  
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Since α is a very small value and ∆𝑉J is directly proportional to the coefficient, also 
the overall variation of voltage is small and reading it over a bias value of some volts 
is not easy nor convenient. A possible solution is to use a differential measurement.  
 

 
Figure 25.14: Differential configuration to avoid self-heating 
 
The configuration shown in figure 25.14 includes the reference voltage 𝑉J. on the 
right part of the circuit and makes it possible to take directly differential 
measurements of ∆𝑉J. On the left, we have the signal that has to be measured.  
However, in various cases the RTD is placed on a measured object not near to the 
circuit and a couple of wires brings the signal from the sensor to the amplifier. 

 
Figure 25.15: Two-wire-connection. Highlight on wire resistances 
 
The wires are both made of the same material and have the same resistance RL in 
which flows IS from the current generator, causing an unwanted voltage drop.  Hence, 
an error occurs due to the misreading of the correct value of ∆𝑉J. The circuit above 
represents the so called "Two-wire-connection" and since the resistances on the left 
side can all be considered in series, the voltage drop added to VS is equal to 2IS RL.  
Errors in ∆𝑉J due to wire resistance RL are avoided using a "Three-wire-connection".    
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Figure 25.16: Three-wire-connection 
 
The third wire resistance is inserted in the common return path to ground. With this 
configuration both left and right side of the circuit include in series a wire resistance 
RL and, under the hypothesis of having RS equal to R0, the voltage drop is the same 
for both sides. An alternative configuration, useful when current generators are not 
available, is the Wheatstone bridge: it requires only four resistances and it is cheaper, 
easier to use and it occupies less space than a current generator, therefore the costs 
of the system can be reduced.  

 
Figure 25.17: Wheatstone bridge 
 
The only drawback is that it is not linear. It is based on the principle of a voltage 
divider, implemented by the RS of the RTD in series with a reference resistor R0; the 
variations of the divider output voltage correspond to the variation of the sensor 
resistance.  In a first analysis, the four resistances can be considered equal; RS is the 
sensor resistance and the other three R0 have the same value. 
 

            𝑉d4 = 𝑉<
23

23:23
= eO

7
           𝑉d = 𝑉<

2P
23:2P
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Since the sensor resistance is connected to the object, a ∆𝑅J variation takes place due 
to a variation of temperature, so 𝑅d = 𝑅4 + ∆𝑅d.f the variation of the relative 
resistance is less than 5% (∆𝑅𝑆 < 0,05𝑅0), the voltage variation ∆𝑉J can be 
considered linear and its value is the derivative of VS as function of the resistance RS: 
 

  
 

The result is a function both of the bias voltage VA and of the α coefficient; 
nevertheless, the variation is very small it does not represent an issue because a 
modulation technique can be used to improve the voltage value, i.e. Lock-in 
Amplifier arrangement.  A possible doubt could arise about the optimum value of the 
three resistance in the bridge.  
 

 
Figure 25.18: Wheatstone bridge with different values of R0 

 
For example, in this configuration the resistances on the upper part of the circuit have 
a value x times R0; computing the same calculations as before the result is different, 
since all the voltages, including the variation ∆𝑉J, become function of the x value: 
 

   

              

 
  

The Wheatstone bridge can be employed with any ratio x of the voltage divider. 
However, with x=1 the highest output ∆𝑉J is obtained: 
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If the x value changes also the sensor sensitivity will change: an increase of the x 
value will lead to worsen ∆𝑉J, so a worse SNR.  
It is possible to extend the application of the Wheatstone bridge also to cases with 
greater variations of ∆𝑅J, even if they have a non-linear but known dependence of 
∆𝑉J on ∆𝑅J. Considering again all the resistances equal, the new value of the voltage 
variation is: 

   
Even if it is possible to use resistances instead of current generator, a problem still 
remains: in case of remote RTD operations, the long wire which connects the object 
to the sensor has to be considered.  

 
Figure 25.19: Remote RTD Operation 
 
Two different configurations can be used. The first one, shown in figure 25.20 on the 
left, is the "Three-wire-connection": on the left side of the circuit there are R0+RL and 
RS+RL; the RL in the middle has no drop since it is connected to an ideal differential 
amplifier, so a negligible current flows in that branch. The resistance is just added in 
order to be sure that all the Thomson, Seebeck and Peltier effects are equally 
distributed among the three wires. On the right side of the circuit, the current flows 
in the series of the two resistances R0 and the overall voltage is VA/2.  
The second circuit (figure 25.19 on the right) represents the "Four-wire-connection" 
and is just a more symmetrical version than the previous one. Although with four 
wires the probability of introducing parasitism and interference increases, the 
symmetric configuration is able to perform more precise and detailed measurements.   
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Figure 25.20: RTD preamplifer and equivalent circuit for noise computation 
 
Since the source resistance is low, typically R0=100Ω, the input differential 
resistance RiA and the input-to-ground resistance RCA can have moderately high 
values. The contribution of the input current noise generators is reduced; therefore, 
the input voltage noise generators are dominant. 
Since the differential signal ∆𝑉Jis accompanied by a high common mode signal VA/2, 
the CMRR should have an adequately high value at the frequency of the supply VA. 
An AC supply voltage VA can be selected with a frequency of several kHz in order 
to reduce the 1/f noise contribution. 
 

26.3 Thermistors 
Thermistors are temperature sensor based on the same principle of RTD, i.e. using 
the variation of the relative resistance variation of a certain material to measure the 
variation in temperature. Nevertheless, they present a different behavior: as the 
temperature increases, the resistance decreases, because thermistors are not made of 
the same materials as RTDs. In particular, semiconductor ceramic elements and 
oxides of Cr, Mn, Fe, Co and Ni are the most used ones. The relative resistance 
variation as function of temperature is much higher than in RTDs; indeed, while in 
RTDs it goes from ≈ 1 at standard reference temperature (0℃) to ≈ 4 in about 800℃, 
with thermistors ΔRS goes from ≈ 4 to less than 1 in a temperature range smaller than 
about 5℃. The resistance-temperature relationship can be described by the equation:  
 

   
 

where T is the absolute temperature in Kelvin degrees, B is constant; B is the so-
called characteristic temperature of the thermistor and usually ranges from 2000K to 
4000K. Considering also the reference resistance value R0 at a known temperature 
T0, the final expression of the resistance becomes: 
 

 

( )expR B T=

0
0

1 1expR R B
T T
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The drawbacks of these kinds of sensors are the strongly non-linear characteristic, 
the lower accuracy and lower reproducibility, which limit the application of 
thermistors in automatic control systems and in integrated circuits.  
The big advantage, instead, is the possibility to have large variations of the resistance 
in a very small temperature range.  
 
 



 

    CHAPTER     26 

Strain Gauges 
Strain gauges are sensors used to measure the deformations induced in a body when 
an external force is applied. A brief physical explanation of the strain gauge 
principle is given in this chapter. The main features and limitations of a metal thin-
foil strain gauge are described. Some measurement and compensation techniques 
are presented. Finally, the performance of metal strain gauges is compared to that 
of semiconductor ones. 
 

 
26.1 Introduction 
A strain gauge (or strain gage) is a resistor, made of metal or semiconductor 
material, used to acquire information about strain. In fact, when an external force is 
applied to a resistor, its resistance value can change due to both the mechanical 
deformation and to a phenomenon called piezo resistivity. The change is 
deterministic: equations can be derived to link the resistance variation to the applied 
deformation. The resistance change can be simply linked to an electrical variable, 
which can be measured to obtain information about the strain. However, the 
measurement procedure is not trivial, and several factors should be taken into 
account to obtain a sufficient level of sensitivity and avoid reading errors. Aspects 
like temperature of operation, adhesive used to bond the sensor to the surface, length 
of the connection wires, and so on, will all influence the measurement in different 
ways and must be properly compensated. A single optimum strain gauge does not 
exist: instead, several options are available, and for each measurement set-up the 
best suited one should be chosen as a trade-off among the characteristics of the 
sensors. In order to make the best choice in such trade-off, the main characteristic 
of a strain gauge and its limits should be understood.  
 
26.2 Strain Gauge principle 
For a thin slab of conductor material like the one schematized in figure 26.1, the 
resistance is: 
 

 𝑅 = 	𝜌 ∙
𝐿
𝐴  

	
𝜌 = 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦	[𝑂ℎ𝑚 ∙ 𝑚] 
𝐴 = 𝑊 ∙ 𝐻 = 𝑠𝑒𝑐𝑡𝑖𝑜𝑛	[𝑚%] 
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Figure 26.1: schematic view of a thin metal bar 
 
The variation of resistance experienced when a strain is applied can be linked to 
these three parameters. 
 
26.2.1 Measuring Strain 
Whenever an external force F is applied to a body, reactive forces are induced within 
the body. These forces are distributed throughout the body: Stress (N) is the force 
density per unit area:  
 

 𝑁 =
𝐹
𝐴  

𝐹 = 𝑓𝑜𝑟𝑐𝑒	[𝑁]	
𝐴 = 𝑠𝑒𝑐𝑡𝑖𝑜𝑛	𝑎𝑟𝑒𝑎	[𝑚%]	

𝑁 = 𝑠𝑡𝑟𝑒𝑠𝑠	 ñ
𝑁
𝑚%ò 	𝑢𝑠𝑢𝑎𝑙𝑙𝑦	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑	𝑖𝑛	[𝑀𝑃𝑎] 

 

A stress can be tensile (if it tends to pull the atoms of the body farther apart from 
each other), compressive (if it pushes the atoms of the body closer to each other), or 
a shear stress (if it tends to produce relative slip of atomic planes on one another). 
As an effect of the applied stress, the dimensions of a body change. Strain (𝜀) is the 
relative change in dimension of the body, with respect to the original size. 
 

 ε =
∆L
L   

 
∆𝐿 = 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛	(𝑜𝑟	𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)	𝑑𝑢𝑒	𝑡𝑜	𝐹	[𝑚]	
𝐿 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛	[𝑚]	
ε = strain	[%] 

 

Deformation depends on the orientation of the applied force. It can be reversible, so 
that the body returns to the original size when the force is removed (elastic range) 
or irreversible, if the deformation is persistent even after the force is not acting on 
the body anymore (plastic range).  
 
26.2.2 Elastic module & Poisson module 
Let us consider the case of applying a tensile stress to a thin metal bar of length L 
at rest; the section of the bar is A = W∙H.  A pulling force (F) is applied to the two 
sides of the bar, like in figure 26.1, resulting in a tensile stress.  
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For small ε, the regime is elastic: Strain (ε) is linearly proportional to stress (N) via 
a constant called young modulus (E). For larger deformations (plastic regime), the 
dependence of N on ε is not linear anymore.  
The young modulus of a material is inferred as the slope of the curve in the 
Stress/Strain diagram obtained with a tensile test: it is a proper characteristic of each 
material, as well as the εL that sets the limit to the elastic range. 
Moreover, whenever a tensile stress is applied, due to Poisson effect, the section 
dimensions (H and W in the example) will reduce as length increases. The section 
contraction is proportional to ε via the Poisson module (v) – adimensional – which 
is also a property of the material considered. 
 

 

 
∆𝑊
𝑊 =

∆𝐻
𝐻 =	−𝑣 ∙ 𝜀  

 
It follows that the deformation of the section area A = W∙H will be: 
 

𝑑𝐴
𝐴 =

𝑑𝑊𝐻 + 𝑑𝐻𝑊
𝑊𝐻 =

𝑑𝑊
𝑊 +

𝑑𝐻
𝐻 = −2 ∙ 𝑣 ∙ 𝜀 

 
So, passing to the discrete world:  
 

 
∆𝐴
𝐴 ≈

∆𝑊
𝑊 +

∆𝐻
𝐻 = −2 ∙ 𝑣 ∙ 𝜀  

 
26.2.3 Piezoresistive effect 
The piezoresistive effect is a change in the resistivity of a material when mechanical 
strain is applied. In contrast to the piezoelectric effect, the piezoresistive effect 
causes a change only in electrical resistance, not in electric potential therefore, to 
exploit piezo resistivity in a sensor, an external voltage source is needed.  
In metals, the effect is moderate, and it only contributes in a marginal way to the 
overall change of resistance when an external force is applied. The link between 
resistivity and stress is linear, so it is possible to define a piezo resistivity coefficient 
𝛽 such that: 
 

𝜌 = 𝜌.(1 + 𝛽𝑁) 
 

 
𝑑𝜌
𝜌.

= 𝛽𝑁 = 𝛽𝐸𝜀  

 
 
Where 𝜌. is the nominal value of resistivity, when no external strain is applied. 
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For semiconductors, instead, piezo resistivity is much stronger and resistivity has a 
non-linear and fairly complex dependence on strain.  
 
26.2.4 Gauge factor 
Considering a metal strain gauge, the previous relationships can be exploited: 
 	

𝑅. =	𝜌. ∙
𝐿.
𝐴.

 

 
𝑑𝑅
𝑅.

=
𝑑𝜌
𝜌.
+
𝑑𝐿
𝐿.
−
𝑑𝐴
𝐴.
	= 𝛽𝐸𝜀 + 𝜀 + 2𝜈𝜖 = 𝜀(1 + 2𝜈 + 𝛽𝐸) 

 
Therefore, if resistance variation ∆𝑅	is small, the following equation is valid: 
 

 
∆𝑅
𝑅 = 	𝜀	(1 + 2𝑣 + 	𝛽𝐸)  

 
From which we can define the Gauge factor (G) as follows: 
 

 𝐺 =
∆𝑅
𝑅
𝜀 = 	(1 + 2𝑣 + 	𝛽𝐸)  

 
The gauge factor represents the gain of the sensor system and it varies depending 
on the shape of the strain gauge and the material adopted. For metal strain gauges, 
typical values of G are between 1 and 3, and it is constant for a wide range of 
operation environments. For strain gauges fabricated with semiconductors, G is 
typically higher (G values of some hundreds are achievable), but the value is usually 
less stable than the case of metal. A higher G is desirable as it would allow to 
measure strains with higher resolution, but it is not the only factor influencing the 
sensitivity of a strain-gauge measuring system, as will be clarified in the following 
sections. 
 
26.3 Design and Technology  
The most intuitive and straightforward way to implement a strain gage is just a piece 
of wire glued to the surface of the body where we want to measure the strain. To 
have a larger resistance (thus lower power consumption) one could simply place the 
piece of wire curved in alternate direction, forming S shapes, like in figure 26.2 
(Wound-wire SG). 
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Figure 26.2: schematic view of a wound-wire strain gauge 
 
Longer portions of the wire should be aligned with the principal axis (the axis along 
which the strain must be measured), so the shorter portions would be on the transvers 
axis. If a tensile stress is applied, R increases on the main axis (proportional to strain 
via the Gauge factor: ∆\

\
= 𝐺𝜀	); however, the portion of wire along the transversal 

axis will show a change of resistance with the opposite sign, as it will experience an 
opposite deformation due to Poisson effect.  
The ratio between the change of resistance along the transversal axis and the change 
along the principal axis is called cross-sensitivity: this parameter should be as low as 
possible. It is roughly proportional to the ratio of the total length of the wire portions 
on the two axes. 
Most of modern strain gauges are manufactured with Lithographic technology. Strain 
gauges fabricated with this technology are called thin foil strain gauges: the 
manufacturing process consists of laying a thin metal foil of the sensing material onto 
a carrier (usually a plastic or glass material), and then cutting away portions of the 
foil, to obtain the grid pattern required. Thin-foil technique is preferred to simple wire 
implementation, as it shows several advantages: 

• Larger resistance is achievable, since the foil can be made much thinner than 
a wire.  

• Surface area is larger if the cross section is a rectangle, instead of a circle. 
This grants better heat management (heat diffusion from surface) and easier 
application on the carrier 
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• Lower cross sensitivity can be achieved, because transversal portions of the 
meander can be wider, to have a lower resistance and so a lower contribution 
to transversal gauge factor 

• Easier lead connection, as the connection pad can be realized of the desired 
size 

• Precise manufacturing process with lithographic technology grants high 
reproducibility. This is a key point when matched strain gauges are required 
to implement compensation techniques.  

• Smaller overall dimensions are achievable, so localized stress can be 
measured. 

 

 
Figure 26.3: schematic view of main and transverse axis in a wound wire strain gauge 
 
26.3.1 Strain gauge parameters  
When selecting a strain gauge for a particular application, several different 
constraints should be met. Such constraints can be expressed as requirements that the 
strain gauge should fulfil regarding: 
 

• Accuracy of the measured value, for instance: absence of zero drift 
• Stability of the Gauge factor throughout the measurement, in spite of 

effects such as creep or temperature drift 
• Temperature: immunity to temperature drift in a given temperature range 
• Elongation that the sensor should withstand in that application 
• Test duration: the strain gauge should maintain its properties unaltered for 

the whole duration of the test 
• Cyclic endurance: fatigue-related failure should not show before the end 

of the test 
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• Ease of installation: for instance, if the site where the sensor should be 
installed is very narrow or has a curvature with small radius, the strain 
gauge should have the needed flexibility and size 

• Environment: the materials used should be compatible with the 
environment where they are used. For instance, waterproof strain gauges 
are needed for some applications. 

 
The parameters of choice for a sensor are the following: 

o Strain-sensitive Alloy: the material with which the measuring grid is 
fabricated 

o Backing material (carrier): usually an insulating material, it is a scaffold 
for the sensor. 

o Grid resistance: a higher resistance grants lower power consumption and 
thus a better heat management, but requires a larger size 

o Gauge pattern: the choice strongly depends on the orientation of the strains 
in the body 

o Self-temperature compensation number: a parameter of compatibility 
between a strain gauge made in a temperature-compensating alloy and the 
body, related to the thermal expansion coefficients of the materials 
involved 

o Gauge length: depends on the application and it influences resistance and 
resolution 

 
The selection of a gauge for a certain purpose is not trivial for two main reasons. 
First, because even if these parameters may vary at some extent, it is not possible to 
choose them in any combination at will. In fact, manufacturer usually realize strain 
gauges as complete systems, comprised of a choice of foil/carrier combination and 
determined features such as pads material or shape or (if present) lead wire length. 
Moreover, the choice of a parameter that satisfies a certain requirement is often 
detrimental for other aspects. For example, to measure the strain on a small filet, 
where the surface area is limited, requires a very small device. Such strain gauge 
would unavoidably have a reduced stability and fatigue life, as well as a small 
resistance. This example shows that compromises are always needed when choosing 
a device and understanding the effect of such compromises is necessary for making 
the best choices in each situation.  
 
Alloys:  
The selection of the alloy is usually a balanced trade-off considering gauge factor 
stability against temperature and fatigue, optimal value of resistivity, temperature 
range and sensitivity. Some alloys are mentioned as an example. 
Constantan is the common name of a copper–nickel alloy. Of all modern strain gauge 
alloys, constantan is the oldest, and still the most widely used. The reason is that 
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constantan features a combination of properties which make for an optimum trade-
off for several applications: gauge factor is adequately high and insensitive to strain 
level or temperature; resistivity is high enough (49.0 x 10−8 Ω·m) to achieve suitable 
values of resistance even in small grids. The main feature (that also gives the name 
to this alloy) is the fact that resistivity is quite constant over a wide range of 
temperatures. Constantan sensor can typically measure up to 20000 microstrains. 
However, even if fatigue life of constantan is quite good, it exhibits permanent 
change of resistance under high cyclic strains, which causes a zero shift in the strain 
gauge. An Isoelastic Alloy (also called D alloy by some manufacturers) is preferable 
when purely dynamic measurements have to be made, that is, if it’s not necessary to 
maintain a stable reference zero. One of D-alloy main features is a greater fatigue 
life, together with high gauge factor. However, its thermal output is also very high, 
thus it cannot be used unless a system level temperature compensation technique can 
be adopted. Other alloys, like K Alloy from VPG Micromeasurements, are designed 
to offer a quite flat temperature response and great fatigue life in quite extreme 
temperature context (–269° to +260°C), but the installation technique of such strain 
gauges is more difficult than others. 
 
Fatigue life 
Just like any other metal, the sensing grid of a thin foil strain gauge is subject to 
fatigue damage when strained cyclically at a sufficiently high strain level. Fatigue 
damage is a critical issue in strain gauges, influenced by several different factors that 
can impair the measurement in different ways. For instance, the unstrained resistance 
of the sensor may change due to fatigue, causing a signal at the output even when no 
signal is applied (“zero shift”). This causes reading errors when a static strain should 
be measured, but the effect may be negligible for dynamic measurements. However, 
with cyclic simulation, microfractures may appear in the sensing grid, that would 
affect dynamic measurements. Consider as an example a sinusoidal strain: the cracks 
would appear only when the tensile strain is applied, but they would close back in 
unstrained condition: their effect is therefore visible only for dynamic measurements, 
as the resulting sine wave would appear distorted. Fatigue damage may also cause 
variation in gauge factor, that may appear increased for tensile stresses and decreased 
for compressive forces.  
The strain gauge bonding pads are where the risk of fatigue-related damage is higher, 
because of the abrupt shift in section of the grid. A good practice to limit this effect 
is to mechanically decouple the pads from the sensing grid, or at list to position the 
sensor so that they are subject to reduced strains. The presence of an encapsulating 
cover can reduce fatigue related damages. The number of cycles that a sensor can 
withstand without failing is specified by the manufacturer and is called fatigue life. 
A possible definition for fatigue life is the number of cycles after which the sensor 
shows a zero shift of 100𝜇𝜀	: typical values for metal strain gauges are around 10� 
cycles. 
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Carriers 
The support serves several functions at once: it provides a mean for handling the foil 
pattern during installation, as well as electrical insulation between the sensing foil 
and the test object. Also, it presents a readily bondable surface for adhering the gauge 
to the test specimen. The backing material should also be unaffected by temperature 
changes, while being thin and strong enough to transmit the force from the test object 
to the sensing wire. As already mentioned above, carrier and sensing material are not 
two independent parameters. Instead, strain gauges are designed as systems and only 
some combinations of alloy and carriers are available. Manufacturers usually offer 
different strain gauge “series” with different combinations, and for each series the 
main characteristics and suggested applications are listed. Typical carrier materials 
are polyimide – a polymeric material with high heat resistance (temperature range 
from -195° to +175°C) and capable of elongations up to 20% – or other glass-fiber-
reinforced materials, which may withstand even more extreme temperatures (up to -
269°C +290°C), but for smaller strains (around 2%).  
 
Glues 
The choice of the adhesive to fix the strain gauge to the test object is not trivial and 
cannot be overlooked: the glue must accurately transmit the strains from the body to 
the sensor. One of the critical parameters is the application temperature range of work 
of the sensor, as some glues are cold-curing while other are hot-curing, and a 
temperature shift may alter the adhesive properties of the chosen glue. Moreover, the 
adhesive should be insulating and have high resistance to creep. Manufacturer usually 
include a section about glues in their catalogues, and in the description of each strain 
gauge series the best suiting glue is suggested. The surface of the test object where 
the strain gauge is mounted must often undergo a preparation procedure before 
bonding. Such procedures are suggested by strain gauge manufacturers too. 
 
Connections 
Integrated solder pads may be present at one end of the device, allowing direct 
soldering on the strain gauge. This makes the connection process very easy, but in 
this way the solder pads are not mechanically decoupled from the sensing grid and a 
strain would induce a change of resistance in the pads too, causing possible 
measurement errors. Mechanical decoupling can be partially achieved with bigger 
solder pads shaped in a way that would make them less sensitive to strain. 
Alternatively, some SG are provided with wires directly attached to them, and offer 
full mechanical decoupling between grid and connector, but a long cable would cause 
a change in the nominal resistance of the device, so different compensation 
techniques may be necessary at system level, to avoid static errors. 
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Patterns 
The gauge pattern refers cumulatively to the shape of the grid, the number and 
orientation of the grids in a multiple-grid gauge, and the solder tab configuration. For 
a single-grid gauge, connectors size and placement should be compatible with the 
application (consider again the example of measuring the strain on a thin metal filet). 
The main axis should be oriented along the direction of the strain; thus, such solution 
can be employed only when the direction of the strain is known a priori. A trade-off 
ensues also when considering the size: a narrower grid would minimize the averaging 
error due to the presence of strain gradients in directions perpendicular to the main 
one; on the other hand, a wider grid would allow better heat dissipation and higher 
resistance (thus, lower power dissipation).  
When the direction of the strain to be measured is not known and cannot be 
determined a priori, instead, a multielement rosette is required. Many different 
configurations are available, as sketched in figure 26.4. 
 

 
Figure 26.4: some possible configuration of multi-grid strain gauges, from VPG 
 
A two-element rosette is typically used when the direction of the main strain can be 
at least supposed from the test object geometry. In other cases, a three-element rosette 
can be used to determine the direction. A single-plane rosette (60-degree or 45-
degree) is superior to a stacked rosette configuration in terms of heat transfer (since 
there is more surface available for power dissipation) and more accurate when 
perpendicular strain gradient is also present (for example: bending), since all grids 
are as close as possible to the surface. On the other hand, a stacked rosette is 
advantageous when there are large strain gradients in the plane of the test subject: 
since the area is reduced, the averaging error will be also reduced. 
 
Summary 
Strain gauge manufacturers usually provide guides and tables where all available 
combinations are listed, with the relative parameters of temperature range, strain 

  

  
 



Strain gauges 

 365 

range and fatigue life in different operating conditions. As an example, a table taken 
from the website of VPG Micromeasurements is reported in figure 26.5.  

 
Figure 26.5: table from a VPG Micromeasurements technical note, listing the most suited strain gauge 
series to adopt in different situations, together with the suggested adhesive and the strain gauge main 
parameters 
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26.4 Electronics & Temperature compensation 
A strain applied to a strain gauge causes a variation of the resistance value which, 
at least for a limited range of values, follows a linear relationship: ∆𝑅 = 𝑅.𝐺𝜀  

 
Figure 26.6: the Wheatstone Bridge configuration 
 
In the previous chapter we studied this configuration; in this case we obtain: 
 

 ∆𝑉O = ∆𝑅O §
𝑑𝑉!
𝑑𝑅O

©
\*R\G

=
1
4𝑉|

	∆𝑅O
𝑅.

	= 	
1
4𝑉|𝐺𝜀  

 

 
𝑉J
𝜀 =

1
4𝑉|𝐺		 ñ

𝑉
𝜇𝜀ò = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  

 
This relationship shows that sensitivity can be increased with a better strain gauge 
(with higher gauge factor) o choosing a higher level of power supply.  
If a measurement requires a high level of precision or if the relationship ∆\1

\G
≪ 1 is 

not valid, non-linearities have to be considered. However, strain gauge manufacturers 
like Vishay provide mathematical tools to correct for errors like this. From the 
computation, it is confirmed that, for small strain values, the error is zero, but it 
becomes non negligible for larger values of 𝜀. 
Sensitivity can be doubled if two sensors are employed, instead of just one. The use 
of two strain gauges with astute positioning also allows the separate measurement of 
different components of strain even if they are present simultaneously.  
As an example, consider the case of a thin metal bar subject to bending (blue arrows) 
and compression (red arrows) forces at the same time (figure 26.8). 
To maximize sensitivity, the two strain gauges should be positioned on the two 
opposite sides of the metal bar. In this case: 
 

• The effect of compression would be the same for bot strain gauges: a 
compression will reduce the nominal resistance value (while an extension 
would increase it). 
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• Bending would have opposite effect on the two SG: the upper part of the 
bar would be extended, so 𝑅J; would experience and increase in 
resistance; the opposite is true for the lower part, thus the resistance of 
𝑅J�	would decrease instead. 
 

 
Figure 26.7  
 
First, consider the case when only bending must be measured. As mentioned above, 
a compression strain causes a resistance variation in the same direction in both 
sensors: it is a common mode signal. If 𝑅) = 𝑅J; and 𝑅P = 𝑅J�, the common mode 
variation induced will cause the two voltage partitions to vary by the same amount, 
that means: 𝑉J = 𝑉! − 𝑉#	 = 0. 
On the other hand, the effect of bending is the opposite for the two sensors and will 
cause 𝑉! to increase and 𝑉# to decrease. If we consider a small resistance variation, 
∆\1
\G
≪ 1, the linear approximation is valid, and the output voltage can be computed 

exploiting the principle of superposition of effects: the contribution to the output of 
the two strain gauges can be computed independently and then summed up. 
Considering first only 𝑅) = 𝑅J;, the output variation due to a resistance variation 
∆𝑅O has already been computed and it is: 
 

𝑉J,\) =
1
4𝑉|

∆𝑅J;
𝑅.

 
 

The contribution to the output voltage of 𝑅P = 𝑅J� can be easily computed and it is: 
 

𝑉J,\V = 𝑉| 	§
1
2 −

𝑅. + ∆𝑅J�
2𝑅.	 + ∆𝑅J�

© ≈ −
1
4𝑉|

∆𝑅J�
𝑅.

 

 
For compression/extension, ∆𝑅J� = ∆𝑅J;; therefore, when summing the two 
contributions, it results, as expected: 
 

𝑉J = 𝑉J,\) + 𝑉J,\V = 0 
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If a bending strain is considered instead, the upper part of the metal bar will extend 
due to the bending, while the lower part will shrink.  The resistance variations of the 
two strain gauges can be considered equal in absolute value but they will have 
opposite sign:  

	
|∆𝑅J;| = |∆𝑅J�| = ∆𝑅J 

∆𝑅J; = −∆𝑅J� 
 
This leads to:  
 

 𝑉J = 𝑉J,\) + 𝑉J,\W =
1
4𝑉|

∆𝑅J
𝑅.

+
1
4𝑉|

∆𝑅J
𝑅.

=
1
2𝑉|

∆𝑅J
𝑅.

  

   

 𝑉O =
1
2𝑉|𝐺𝜀  

 

That means sensitivity is doubled for the detection of bending strains, with respect to 
the case when only one SG is employed. Another possibility to detect bending 
without detecting compression/elongation would be placing the two strain gauges in 
the same branch of the Wheatstone bridge (for instance 𝑅J; = 𝑅), 𝑅J� = 𝑅%). The 
computation steps would be similar to the ones reported for the previous case. 
For measuring compression/elongation instead, 𝑅J�		should be placed in the bridge 
as 𝑅b, while 𝑅J; is still used as 𝑅). In this configuration, the effect of the bending 
strain on the output will be nil. This can be shown with a reasoning similar to the 
previous one, considering the two strain gauges one at a time. The resistance variation 
of the two strain gauge will be equal in magnitude, but with opposite sign: 
 

|∆𝑅J;| = |∆𝑅J�| = ∆𝑅J 
∆𝑅J; = −∆𝑅J� 

 
The effect of 𝑅J; is the same as above, being it in the same position: 
 

𝑉J,\) =
1
4𝑉|

∆𝑅J;
𝑅.

 
 

Let us compute the effect of a variation of 𝑅b = 𝑅J; : 
 

𝑉J,\W = 𝑉| 	§
1
2 −

𝑅.
2𝑅. + ∆𝑅J�

©	

 

𝑉J,\W = 𝑉| 	§
2𝑅. + ∆𝑅J� − 2𝑅.
4𝑅. − 2∆𝑅J�

© ≈
1
4𝑉|

∆𝑅J�
𝑅.

	

 
It follows, substituting ∆𝑅J; = ∆𝑅O and ∆𝑅J� = −∆𝑅O  : 
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𝑉J = 𝑉J,\) + 𝑉J,\W =
1
4𝑉|

∆𝑅J
𝑅.

−
1
4𝑉|

∆𝑅J
𝑅.

= 0 

 
While for compression/extension, since ∆𝑅J; = ∆𝑅J�	 = ∆𝑅O, the result would be 
again:  	
 

 𝑉J = 𝑉J,\) + 𝑉J,\W =
1
4𝑉|

∆𝑅J
𝑅.

+
1
4𝑉|

∆𝑅J
𝑅.

=
1
2𝑉|

∆𝑅J
𝑅.

  

 
That is: sensitivity is doubled. Following the same reasoning, a full bridge 
configuration may be adopted, where all four of the resistors are active sensors. This 
would further increase sensitivity, doubling the result obtained: 
 

 𝑉J = 𝑉|
∆𝑅J
𝑅.

= 𝑉|𝐺𝜀  

 
26.4.1 Voltage supply 
It is evident from the previous examples that the output is related linearly to the power 
supply value 𝑉|: one might consider to just increase this value as much as possible to 
increase sensitivity. Although this would work in principle, non idealities must be 
taken into account when considering this option. In fact, a constraint of max power 
dissipation on each sensor must be observed, in order to limit grid self-heating that 
would cause measurement errors. There is no standard value for the optimum power 
supply to be adopted, as it depends on the sensors used (max power is specified by 
the manufacturer) and the conditions of the measurement. For instance, if the 
measuring grid has a large surface and the test object is made of metal and connected 
to a heat sink, the requirements on maximum heat tolerable are relaxed. If strains 
must be measured on a plastic object, instead, it is critical to keep the heating very 
low, as plastic is an insulator and a change in temperature might also influence the 
properties of the glue, impairing the measurement in more than a way. 
For a Wheatstone bridge with power supply 𝑉|	, the mean power dissipation on a 
strain gauge would be: 
 

 𝑃K=OO =
𝑉|%

4𝑅.
  

 

Reversing this equation gives a first level estimation of the maximum power supply 
that may be adopted: 
 

 𝑉| < Á4𝑅.𝑃K=OO,<`,  
 
The chosen value should be strictly smaller than the maximum, as the signal would 
introduce further power dissipation on the sensor. Typical values range from some 
hundreds of mV to a couple of Volts. 
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In some cases, an AC voltage supply may be used, rather than a DC one. This may 
be useful when the signal has a low frequency spectrum and the conditioning 
electronics introduces a non-negligible noise at low frequency. If a sinusoidal voltage 
supply is used, the resulting signal 𝑉J	will be modulated at the frequency of the power 
supply, and then a LIA may be used to extract the signal, escaping from 1/f noise. 
Even if the applied strain is already modulated (for instance, a strain caused from the 
vibration of a motor rotating at 15000rpm would give a signal modulated at 250Hz), 
voltage supply modulation can be superimposed to it and the measurement can be 
still performed using a LIA filtering setup. Another advantage brought by using a 
sinusoidal reference is that the peak value 𝑉| can be set higher by a factor √2		than 
the one computed for the static reference to respect the constraint on maximum 
power. In fact, the power delivered to a resistor 𝑅. by a sinusoidal power supply of 
amplitude 𝑉|/2 (considering the partition between the SG and the resistor, only half 
of the power supply falls on the sensor) is: 
 

 𝑃K=OO,|] = §
𝑉|
2√2

©
%

	
1
𝑅.

=
𝑉|%

4 ∗ 2
1
𝑅.

  

 
 𝑉|,<`,,|] = Á2 ∗ 4𝑃<`,𝑅. = √2𝑉|,<`,,r]  

 
A higher peak voltage supply is advantageous, as it yields higher sensitivity. 
 
26.4.2 Temperature compensation 
Since the output of the bridge is proportional to a variation of the sensor resistance, 
any drift of the resistance from the nominal value will result in an output signal, 
regardless of the nature of the variation itself. The resistivity of a metal is 
temperature-dependent: 𝜌 = 𝜌. + 𝛼∆𝑇𝜌.. This means that even if no strain is 
applied, a change in temperature ∆𝑇 will cause a change in resistance ∆𝑅J	 
proportional to ∆𝑇	via a temperature coefficient 𝛼 which depends on the metal 
employed for the sensing grid. For metals used in SG manufacturing, a typical value 
of 𝛼 is around 𝛼 = 4 ∗ 10#P/𝐾. A resistance variation due to a temperature shift will 
be interpreted at the output as a strain.  
 

 §
∆𝑅O
𝑅.

©
Q
= 𝐺𝜀  

 

 §
∆𝑅O
𝑅.

©
-
= 𝛼∆𝑇  

 
A temperature variation appears as a strain according to the following equation: 
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 𝜀 =
𝛼∆𝑇
𝐺   

 
Assuming 𝛼 = 4 ∗ 10#P/𝐾 and G = 2, the equation leads to a factor of 2000 𝜇strain 
for each kelvin degree temperature variation. 
The origin of this problem lays in the difference between the temperature coefficients 
of the SG and of the regular resistors adopted to complete the bridge: if they were 
equal, a temperature variation would cause the same resistance variation in all 
resistors, and thus a nil output. Following this reasoning, one way to compensate for 
this issue is to just use another strain gauge as a resistor, but oriented in a way so that 
it is insensitive to strain.  
Strain Gauge manufacturers usually provide two-grid strain gauges where the two 
sensing grids are placed with the sensitive axes one perpendicular to the other, so that 
only one would be sensitive to the strain (Active Gauge), while the other acts as a 
Dummy cell and it is only sensitive to temperature variations. Adopting a 
configuration like the one in figures 26.8, the output will be nil when no strain is 
applied. 

 
Figure 26.8: schematic view of Active and Dummy gauge configuration  
 
If two strain gauges are needed (for instance, to measure a composite strain like 
bending), the other two resistors of the bridge can be used as dummy sensors to 
compensate for temperature effects. 
A temperature variation will also cause thermal expansion, both in the test object and 
the strain gauge applied to it, that may lead to measuring errors if it is not the variable 
of interest. This issue can be circumvented adopting a strain gauge made with a 
sensing material for which the thermal expansion coefficient is the same as that of 
the test object (or at least very close to it).  
 
26.4.3 Lead wires resistance 
If the strain gauge circuit is far away from the electronics, the resistance of the 
connecting wires may be an additional source of error. Considering the case of a ¼ 
bridge, if just two wires are used to connect it to the rest of the circuit, a voltage offset 
will be present at the input of the differential amplifier, due to the difference in the 
partition branches (figure 26.9, the voltage supply is here called 𝑉»z	instead of 𝑉|). 
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Figure 26.13: Two-wire connection of a quarter bridge circuit 
 
Even if all the resistors in the bridge have the same nominal value 𝑅., the two 
partitions are different:  
 

𝑉# =
)
%
𝑉| , while 𝑉! = 𝑉|

\G
%\G!\?)!\?*

< )
%
𝑉| 

 
Although the offset may be easily accounted for during signal processing, further 
errors may arise from the fact that the temperature coefficient of the lead wires 
(usually made of copper) is greater than that of the gauges by 1-2 orders of 
magnitude. Therefore, a slight change of temperature can lead to a measuring error 
of several microstrains. Using a three-wire connection can eliminate this effect and 
reduce the offset to a negligible value at the same time.  

 
Figure 26.14: Three-wire connection 
 
In fact, the positive pin is connected to a large impedance differential amplifier via a 
wire with resistance 𝑅�% (see figure 26.14). However, the current flowing in 𝑅�%	is 
negligible, so we can consider that there is no voltage drop over this resistance. This 
means that the voltage at the positive pin is 𝑉! ≈

)
%
𝑉|, and any fluctuation of 

resistances 𝑅�), 	𝑅�P cancel out. If the current entering the differential amplifier is not 
negligible, a fourth wire may be added to make the structure perfectly symmetrical 
and eliminate any residual offset. A large wire resistance may also cause reading 
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errors due to voltage drops along the wire itself: this issue can be accounted for and 
compensated during the signal processing phase once again using mathematical tools 
provided by the manufacturer. 
 
26.5 Semiconductor Strain Gauges 
As already mentioned in the first section, piezo resistivity is a prominent effect in 
semiconductors like Si and Ge, therefore such materials are commonly employed 
for the manufacturing of strain gauges. The high piezo resistivity allows the 
fabrication of sensors with a gauge factor 5 to 10 times higher than that achievable 
with metal strain gauges. Moreover, semiconductor sensors can be much smaller 
(less than 1mm) than metal ones, and with higher resistance, as the resistivity of 
silicon is some order of magnitude higher than that of constantan. They can be 
directly integrated in a circuit, for measuring very small local strains (down to 
10#%𝜇𝜀) with low power consumption. Performance is also improved for what 
concern hysteresis: semiconductors are less subject to creep, so fatigue life is 
increased. However, since piezo resistivity in semiconductors is a complex 
phenomenon, the resistance variation has a non-linear dependence on strain, i.e.: 
the gauge factor markedly varies with the level of the applied strain and with 
temperature, with deviations of 10%-20% from the nominal value. For this reason, 
the dynamic range of measurable strain is limited, and manufacturers usually 
provide correction coefficients to apply to the values obtained to compensate for 
non-linearity. Gauge-factor magnitude and sign can be controlled by doping level 
and sign, since it is related to the mobility of carriers in the crystal: p-type doped Si 
has a positive G, whereas n-type shows negative G. 
This allows to implement temperature compensated Wheatstone bridge structures, 
where sensitivity is increased with the collaboration of two or more sensors that 
react in opposite way to the same strain. 
 

Characteristic Metal Strain Gauge Silicon Strain Gauge 
Size for 1kOhms 0.04𝑖𝑛𝑐ℎ% 0.0004𝑖𝑛𝑐ℎ% 

Gauge Factor 1 – 3 50 – 300 
Resistance 120 – 5kOhms 120 – 10kOhms 
Resistance 

Temperature 
coefficient 

1% per 100F 10 – 20% per 100F 

Gauge Factor 
Temperature 

coefficient 
-3% per 100F 1 – 20% per 100F 

Dynamic range 500 – 10.000 𝜇𝜀 500 – 1.000 𝜇𝜀 
Typical Resolution 0.1 𝜇𝜀 0.01	𝜇𝜀 

 
Table 26.1: summary of semiconductor and metal strain gauge main characteristics 
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In summary, semiconductor strain gauges may be an optimal choice when very 
small strains over a limited range should be measured, as they offer great sensitivity, 
therefore high resolution is achieved. However, the measurements require 
additional care with respect to the case of metal strain gauges, as the many non-
linearities may be a great source of error and more correction steps are necessary. 
A comparison of the main figure of merit of metal SG and semiconductor SG is 
reported in table 26.1 below (data taken from Kulite Semiconductor Products inc.). 
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