Sensors, Signals and Noise

COURSE OUTLINE

- Introduction
- Signals and Noise
- Filtering
- Sensors: Temperature Sensors

- Metallic RTDs: principle and fabrication
- RTD Electrical Signal
- Circuits for measurements
- Thermistors

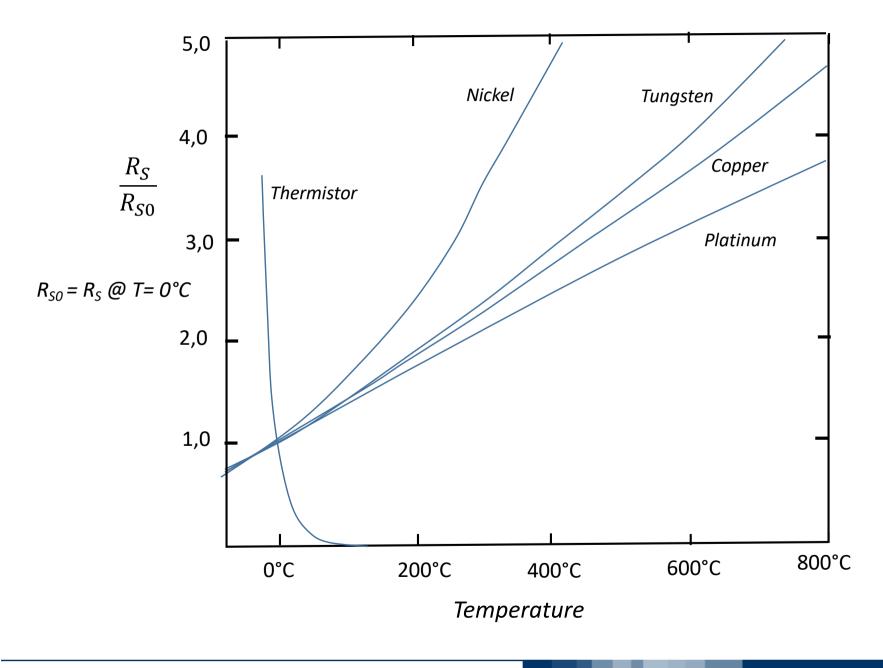
Metal RTD principle

Principle:

- **Resistance** *R_s* of metal conductors **increases monotonically with temperature T**
- Calibration of resistance versus temperature $R_s(T)$ is accurate and stable
- By measuring resistance variation ΔR_s we get the temperature variation ΔT

Linear behavior of $R_S(T)$ is a good approximation on wide T range for various metals

 $R_S = R_0(1 + \alpha \Delta T)$ T_0 = reference temperature; $R_0 = R_S(T_0)$;


 $\Delta R_{S} = \alpha \Delta T R_{0} \qquad \Delta T = T - T_{0} ; \quad \Delta R_{S} = R_{S} - R_{0}$

 α is called **temperature coefficient of resistance**.

 α is around $\approx 4.10^{-3}$ for metals currently employed in RTDs

Metal	α
Platinum Pt	3,9·10 ⁻³
Copper Cu	4,3·10 ⁻³
Tungsten W	4,6·10 ⁻³
Nickel Ni	6,8·10 ⁻³

Metal RTD principle

Metal RTD technology

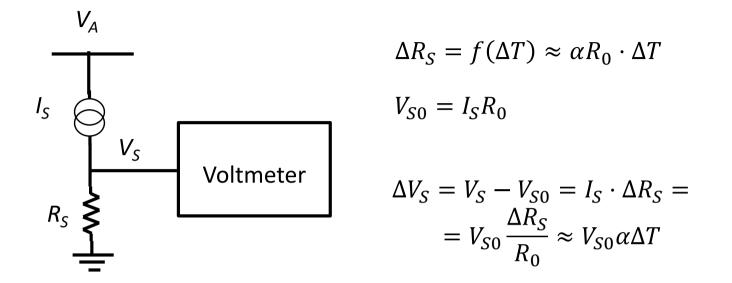
Platinum has useful qualities:

- Chemically inert and resistant to contamination, hence stable properties
- *R_s*(T) linear with very good approximation from -200°C to about 500°C and with small deviation from linearity up to 800°C
- small quantity of Pt necessary in a RTD, cost is not high

Pt is the material of choice in many cases and is used in official metrology to define the International Practical Temperature Scale (from 13,81 K to 903,89 K).

Because of requirements for correct operation, the **RTD fabrication technology is not so simple** :

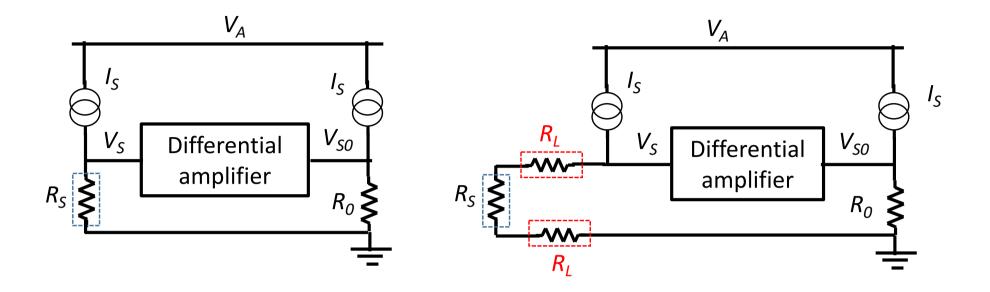
- The package must be compact and ensure good thermal contact of the resistor to the object measured and good electrical isolation from it
- Small size is required with R_0 > some 10 Ω , typically R_0 =100 Ω , in order to have to measure not very small ΔR_s . Thin wire wrapped in spiral on a support is used
- The mechanical structure must avoid strain of the metal wire due to thermal expansion or contraction: the piezoresistive effect would cause unwanted resistance variations and consequent errors in ΔT


Generation of RTD Electrical Signal

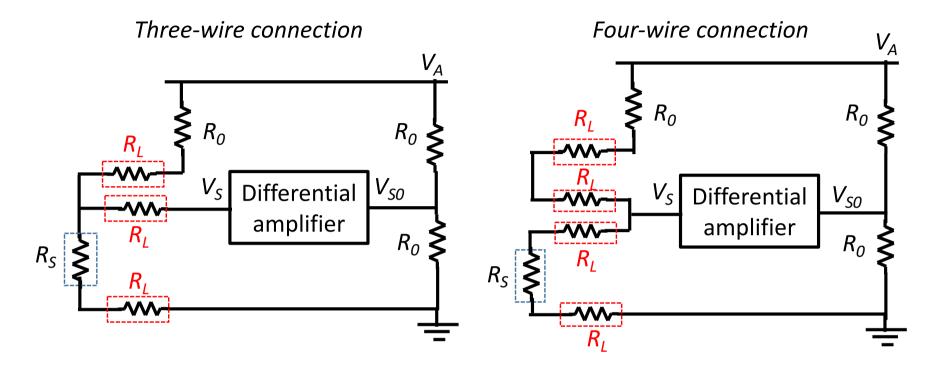
- RTD do not generate an electrical signal, a **power supply is necessary** to get current and voltage in the RTD
- Joule **self-heating** makes the RTD temperature T_s higher than the temperature T_a of the object measured; the difference $\Delta T_s = T_s T_a$ increases with power dissipation P_s and sensor-to-object thermal resistance R_{th} .
- The maximum tolerable ΔT_s in a given RTD configuration sets a limit P_{smax} to the power dissipated in the RTD, hence to the maximum voltage V_s on the RTD

$$P_S = \frac{V_S^2}{R_S} \qquad P_S \le P_{S,\max} \qquad V_S \le \sqrt{R_S \cdot P_S}$$

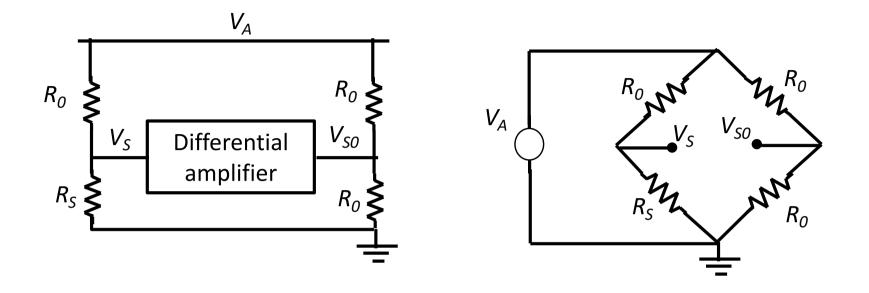
- The allowed voltage V_s on the RTD is fairly small: e.g. with $R_s \approx 100 \Omega$ and limit $P_{Smax} = 100 \mu$ W, the voltage is limited to $V_s < 100$ mV.
- The voltage variations to be measured for small variations of temperature are a small fraction of V_s, i.e. they are definitely small.


RTD Operation at Constant Current

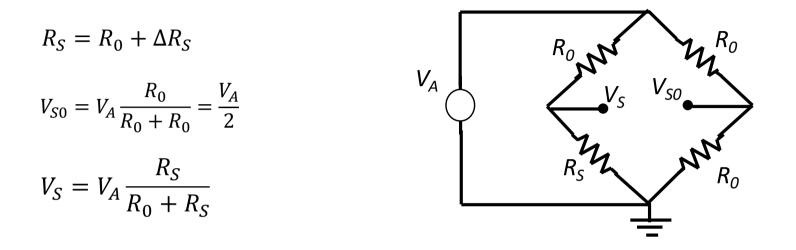
In modern electronics a simple approach is possible and practical thanks to the routine availability of current generators :


- *R_s* is biased with a **constant current** generator *I_s*
- Voltage V_s on R_s is measured
- At any T, V_s is exactly proportional to R_s : the difference ΔV_s from measured V_s to reference voltage V_{s0} gives an accurate measure of ΔR_s

Differential Signal at Constant Current


- Since ΔV_s is much smaller than V_s , it is advisable to include in the circuit a reference V_{s0} and take directly differential measurements of ΔV_s , instead of measuring V_s and then subtracting V_{s0}
- However, in various cases the RTD is placed on a measured object not near to the circuit, the long connecting wires have resistance R_L not negligible with respect to R_S and their effect is significant and must be taken into account
- In the simplest configuration, called **«Two-wire-connection»**, the two wire resistances are in series with R_s and their voltage drop $2I_s R_L$ is added to V_s , thus causing a significant error in the measured ΔV_s

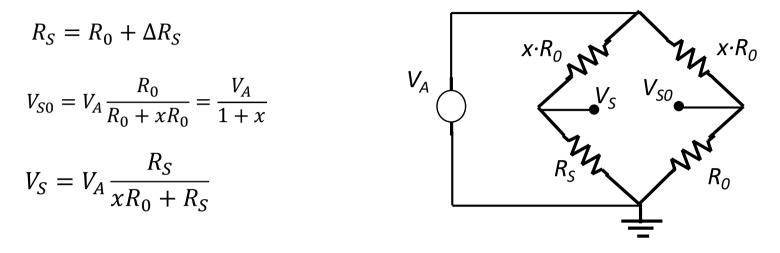
Remote RTD Operation


- «Three-wire-connection» adds one R_L to the RTD and one to the balancing resistance R₀. The R_L of the connection to the differential amplifier is not compensated, but its effect is negligible because the current in it is negligible
- **«Four-wire-connection**» achieves complete simmetry between RTD arm and balancing arm, with complete cancellation of the errors due to wire resistances

RTD Operation in Wheatstone Bridge

- An alternative configuration, devised when current generators were not available, requires only resistors and due to its simplicity is still widely exploited
- A voltage divider is implemented by the R_s of the RTD in series with a reference resistor R₀ and the variations of the divider output voltage corresponding to the variations of R_s are measured
- This is the principle of the **Wheatstone bridge**, invented in 1833 by Samuel Hunter Christie and popularized by Charles Wheatstone and usually drawn as sketched above at right

RTD Linear Operation in Wheatstone Bridge

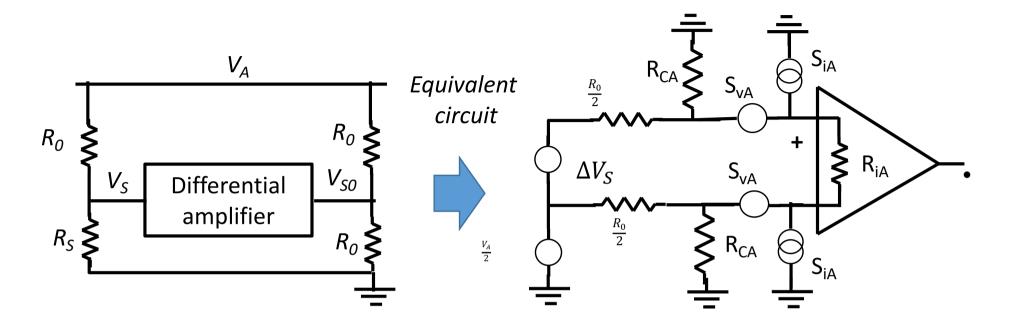


For small resistance variation $\Delta R_s < 0.05 R_0$ the voltage variation ΔV_s is approximately linear with ΔR_s and can be computed by first-order development

$$\Delta V_S = \Delta R_S \left(\frac{dV_S}{dR_S}\right)_{R_S = R_0} = \frac{V_A}{4} \frac{\Delta R_S}{R_0} = \frac{V_A}{4} \alpha \Delta T$$

Signal Recovery, 2023/2024 – Temperature Sensor Ivan Rech

RTD Linear Operation in Wheatstone Bridge



The Wheatstone bridge can be employed with **any ratio x** of the voltage divider, i.e. R_s can be in series with a resistor $x \cdot R_o$ with any value of the factor **x**. However, it is intuitive and readily verified that **with x=1 the highest output** ΔV_s is obtained

$$\Delta V_S = \left(\frac{dV_S}{dR_S}\right)_{R_S = R_0} \Rightarrow \Delta R_S = V_A \frac{x}{(1+x)^2} \frac{\Delta R_S}{R_0}$$

$$\max\left[\frac{x}{(1+x)^2}\right] = \frac{1}{4} \quad for \quad x = 1$$

About RTD Preamplifiers

Since the **source resistance is low**, typically $R_0=100 \Omega$:

- for the input differential resistance R_{iA} and the input-to-ground resistance R_{CA}
 moderately high values are sufficient
- the contribution of the input current noise generators is reduced, the input voltage noise generators are dominant

Since the differential signal ΔV_s is accompanied by a high common mode signal $V_A/2$:

- adequate CMRR is required at the frequency of the supply V_A , which can be selected at several kHz for reducing the 1/f noise contribution

Thermistors

- Commonly used temperature transducers called Thermistors are made of semiconductor ceramic materials, oxides of Cr, Mn, Fe, Co, Ni
- The dependence of thermistor resistance R on temperature is strikingly different from RTDs (see the plot in slide 29): strongly nonlinear, decreases with increasing temperature and the R values are much larger (some 100 kΩ at room temperature) and have much greater relative variation
- The resistance-temperature relationship can be described by the equation

$$R = \exp\left(\frac{B}{T}\right)$$

- where **T** is the absolute temperature in Kelvin degrees, B is constant. B is called characteristic temperature of the termistor and usually ranges from 2000 K to 4000 K.
- Making reference to the resistance value R_0 at a known reference temperature T_0 we get

$$R = R_0 \exp\left[B\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$

Thermistors

- Thermistors can be made **much smaller** than RTDs.
- The smaller mass enables them to respond **more quickly** to temperature variations
- The smaller size, however, makes less efficient the dispersion of the self-heating power, which must be limited to low level
- The basic advantage of thermistors with respect to RTDs is **higher sensitivity**, i.e. larger relative variation $\Delta R/R$ for a given ΔT , which eases measurements of very small ΔT
- The main disadvantages are **lower accuracy and lower reproducibility** and strongly nonlinear characteristics, which limit the application of thermistors in automatic control systems