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Sensors, Signals and Noise 1

COURSE OUTLINE

• Introduction

• Signals and Noise

• Filtering: Band-Pass Filters 3 – BPF3

• Sensors and associated electronics
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Band-Pass Filtering 3 2

• Asynchronous Measurement of Sinusoidal Signals

• Principle of Synchronous Measurements of Sinusoidal Signals

• Noise Filtering in Synchronous Measurements

• Lock-in Amplifier Principle and Weighting Function
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Asynchronous Measurement 
of Sinusoidal Signals 

3
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Asynchronous measurement of sinusoidal signals 4

• Asynchronous (or phase-insensitive) techniques were devised for measuring 
a sinusoidal signal without needing an auxiliary reference that points out
the peaking time (i.e. the phase of the signal). 

• They are currently employed in AC voltmeters and amperometers.

• The basic circuits of such meters are 
the mean-square detector 
the half-wave rectifier
the full-wave rectifier

• For a correct measurement of the amplitude of the sinusoidal signal, it is necessary 
to avoid feeding a DC component to the input of an asynchronous meter circuit. 
Therefore, the meter must be preceded by a filter that cuts off the low-frequencies, 
that is, a band-pass or a high-pass filter.
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Asynchronous measurement of sinusoidal signals
with Mean-Square Detector

5

Low-Pass 
Filter

𝑥 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜗 𝑦 𝑡 = 𝐴! cos! 𝜔𝑡 + 𝜗 =
𝐴!

2
+
𝐴!

2
cos 2𝜔𝑡 + 2𝜗

𝑧 𝑡 =
𝐴!

2

t

• It is a power-meter: the output is a measure of the total input mean power, 
sum of signal power (proportional to the square of amplitude A2 )  plus noise power.

• The low-pass filter has NO EFFECT OF NOISE REDUCTION. In fact, it does not average
the input, it averages the square of the input.

• For improving the S/N it is necessary to insert a filter before the Mean-Square Detector
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Low-Pass 
Filter

𝑧 𝑡 =
𝐴
𝜋

Asynchronous measurement of sinusoidal signals with 
Rectifier

6

𝑥 𝑡 = 𝐴 cos 𝜔𝑡

Half-Wave Rectifier   (HWR)

Full-Wave Rectifier   (FWR)
𝑥 𝑡 = 𝐴 cos 𝜔𝑡

t

Low-Pass 
Filter
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Asynchronous measurement of sinusoidal signals with 
Rectifier

7

• The measurement with a rectifier is not really asynchronous, it is  self-synchronized. 
The sinusoidal signal itself decides when it has to be passed with positive polarity 
and when passed with negative polarity (in the full-wave rectifier) or not passed at 
all (in the half-wave rectifier).

• In such operation, the LPF reduces the contribution of the wide-band noise,
thus improving the output S/N. However, this is true only if the input signal
is remarkably higher than the noise, i.e. if the input S/N is high.

• As the input signal is reduced the noise gains increasing influence on the switching 
time of the rectifier, which progressively loses synchronism with the signal and 
tends to be synchronized with the zero-crossings of the noise. 

• The loss of synchronization progressively degrades the noise reduction by the LPF. 
With moderate S/N the improvement due to LPF is modest; with low S/N it is very 
weak. With S/N < 1 there is no improvement, there is not even a measure of the 
signal: the output is a measure of the noise mean absolute value.

• In conclusion, meters based on rectifiers can just improve an already good S/N. 
They can’t help to improve a modest S/N and it is out of the question to use them 
when S/N <1. For improving S/N it is necessary to employ filters before the meter.
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Synchronous (or Phase-Sensitive) 
Measurements of Sinusoidal Signals

8
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Out+

_

R2R4

R3 RT

VA

Signal and Reference for Synchronization 9

𝑥 𝑡 = 𝐴 cos 𝜔+𝑡 + 𝜑

𝑚 𝑡 = 𝐵 cos 𝜔+𝑡

AC voltage supply

REFERENCE

A to be measured

Shows the frequency and phase of the signal
i.e. points out the peak instants of the signal

SIGNAL OUT

ϕ constant and known*

KEY EXAMPLE  
for the study of synchronous measurements and narrow-band filtering

VA

RT = RT(θ) resistance tracks a variable θ,
(e.g. a temperature  or a strain);  
resistances R2 , R3 , R4 are constant
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Out+

_

R2R4

R3 RT

VA

Signal and Reference for Synchronization 10

𝑥 𝑡 = 𝐴 cos 𝜔+𝑡 + 𝜑

𝑚 𝑡 = 𝐵 cos 𝜔"𝑡

A to be measured
ϕ constant

RT e.g. strain sensor, the resistance varies following a mechanical strain θ

a) in cases with constant strain θ
constant A à x(t)  is a pure sinusoidal signal

b) in cases with slowly variable strain θ = θ(t) 
variable A = A(t)  à x(t)  is a modulated sinusoidal signal

SLOW variations =  the Fourier components of A(f)=F[A(t)] have frequencies  f << fm

VA

KEY EXAMPLE  
for the study of synchronous measurements and narrow-band filtering
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Sample&Hold

𝑉,-. = 𝐴𝑉!" = 𝐴

DC output signal

Signal

δ(t)

Elementary synchronous measurement: peak sampling 11

fm-fm
f

|X|

|W|

f

t

x(t)

t

w(t) = δ(t)

A

𝐴
2
𝛿(𝑓 − 𝑓#)

𝐴
2 𝛿(𝑓 + 𝑓#)

Time domain Frequency domain

Signal

Weighting

NO FILTERING ACTION: output noise power = full input noise power

1

Reference 

Sampling
driver
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Noise Filtering 
in Synchronous Measurements

12
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Synchronous measurement with averaging 
over many samples N >>1 of the peak

13

t

t

tT-T

rT(t)

t

w(t)

𝑤 𝑡 = 𝑚 𝑡 ⋅ 𝑟# 𝑡

𝑁 = 𝑓"2𝑇 ≫ 1

𝑥 𝑡 = 𝐴 cos 2𝜋𝑓1𝑡

T T

m(t)

To take N samples 
is equivalent to gate

a free-running sampler

x(t)
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Synchronous measurement with averaging 
over many samples N >>1 of the peak

14

fm-fm f

|X|

f

|RT|

f

t

t

tT-T

rT(t)

t

fm-fm f

fm-fm

-2fm 2fm

........
m(t) |M|

2fm-2fm

FILTERING: narrow bands at frequencies  0 , fm  , 2fm , 3fm ....

........

𝑤 𝑡 = 𝑚 𝑡 ⋅ 𝑟# 𝑡 𝑊 𝑓 ≈ 𝑀 ∗ 𝑅#

𝑓" ≫
1
2𝑇

𝑥 𝑡 = 𝐴 cos 2𝜋𝑓1𝑡

Δ𝑓! =
1
2𝑇
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Poor Noise Filtering by Sample-Averaging 15

fm-fm

|X|

f

|W|2

fm-fm 2fm-2fm

........

3fm-3fm

f

f

Sn
1/f noise white noise

• At  fm useful band: it collects the signal and some white noise around it
• at f = 0  VERY HARMFUL band: it collects 1/f noise and no signal
• at 2fm , 3fm , ....  harmful bands: they collect just white noise without any signal

𝑦 𝑡+ = %
!/

/

𝑋 𝑓 8 𝑊 −𝑓 𝑑𝑓

SIGNAL NOISE

𝑦% 𝑡0 = %
!/

/

𝑆1(𝑓) 8 𝑊0(𝑓) % 𝑑𝑓
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Synchronous measurement with DC suppression 
by summing positive peak and subtracting negative peak 
samples

16

t

x(t)

t

tT-T

rT(t)

t

m(t)

w(t)

T T
𝑤 𝑡 = 𝑚 𝑡 ⋅ 𝑟# 𝑡

To take 2N samples 
is equivalent to gate

a free-running sampler

NB: equal number of 
positive and negative 
samples (zero net area)
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Synchronous measurement with DC suppression 
by summing positive peak and subtracting negative peak 
samples

17

fm-fm f

|X|

f

|RT|

f

t

x(t)

t

tT-T

rT(t)

t

fm-fm f

fm-fm

-2fm 2fm

........
m(t) |M|

2fm-2fm

FILTERING : narrow bands at fm and at odd multiples 3fm , 5fm ....

........

𝑤 𝑡 = 𝑚 𝑡 ⋅ 𝑟# 𝑡 𝑊 𝑓 ≈ 𝑀 ∗ 𝑅#
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Improved Filtering by Sample-Averaging with DC 
Suppression

18

fm-fm

|X|

ffm-fm 2fm-2fm

........

3fm-3fm

f

f

Sn 1/f noise
white noise

• at fm useful band that collects the signal and some white noise around it
• No more band at f = 0 , no more collection of 1/f noise 
• at 3fm , 5fm .... residual harmful bands that collect just white noise without any signal: 

how can we get rid also of them? 

|W|2
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-T T

Continuous sinusoidal weighting instead of peak sampling 19

fm-fm f

|X|

f

|RT|

f

t

t

tT-T

rT(t)

t

fm-fm f

fm-fm

|M|

TRULY EFFICIENT FILTERING : just one narrow band at fm

𝑤 𝑡 = 𝑚 𝑡 ⋅ 𝑟" 𝑡
𝑊 𝑓 ≈ 𝑀 ∗ 𝑅$

𝑚 𝑡 = 𝐵 cos 𝜔+𝑡

𝑥 𝑡 = 𝐴 cos 𝜔+𝑡
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Optimized noise filtering in synchronous measurement 20

fm-fm

|X|

ffm-fm 2fm-2fm 3fm-3fm

f

f

Sn 1/f noise
white noise

• at fm useful band that collects the signal and some white noise around it
• No band at f = 0 , no collection of  1/f noise
• No residual bands at 3fm , 5fm ... no more collection of white noise without any signal

How to implement this optimized synchronous measurement? 

|W|2
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Basic set-up for Synchronous Measurement 
with optimized noise filtering 

21

𝑦! ∝ 𝐴
𝐴

DC Output

Input Signal

Reference

Gated 
Integrator

2T

-T T ft fm-fm

𝑤 𝑡 = 𝑚 𝑡 ⋅ 𝑟" 𝑡
𝑊 𝑓 ≈ 𝑀 ∗ 𝑅"

Weighting in time domain Weighting in frequency domain

z(t) = x(t) · m(t)𝑥 𝑡 = 𝐴 cos 𝜔+𝑡

𝑚 𝑡 = 𝐵 cos 𝜔+𝑡

Analog
Multiplier

NB: Low-Pass Filter
(with switched parameters)

• NB the reference input to the multiplier is a STANDARD waveform, which 
absolutely does NOT depend on the signal: it is the same for any signal !!

• Therefore the set-up is a LINEAR filter (with time-variant parameters)

Δ𝑓! =
1
2𝑇GI cutGI cut
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Main Advantages of
Synchronous Measurements with optimized noise filtering

22

This linear time-variant filter composed by Analog Multiplier (Demodulator) and Gated 
Integrator (Low-pass filter with switched-parameter) has a weighting function similar 
to that of a tuned filter with constant-parameter, but has basic advantages over it:
• Center frequency fm and width Δfn are independently set 

• The center frequency is set by the reference m(t) and locked at the frequency  fm

• In cases where  fm has not a very stable value the filter band-center tracks it: 
the signal is thus kept in the admission band even if the width Δfn is very narrow. 

• The width Δfn = 1/2T is set by the GI, it is the (bilateral) passband of the GI

• Narrow Δfn and high quality factor Q can thus be easily obtained at any fm

𝑄 =
𝑓A
Δ𝑓B

≫ 1Δ𝑓B ≪ 𝑓A
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Lock-in Amplifier
Principle and Weighting Function

23
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From Discrete to Continuous Synchronous 
Measurements:
principle of the Lock-in Amplifier (LIA)

24

𝑦! ∝ 𝐴

𝐴

quasi-DC 
Output signal

Input signal

Reference

z(t) = x(t) · m(t)
𝑥 𝑡 = 𝐴 cos 𝜔+𝑡

𝑚 𝑡 = 𝐵 cos 𝜔+𝑡

Analog
Multiplier

R

C

wF(α) LPF weighting f. 

The constant parameter LPF performs a running average of the output z(t) of the 
demodulator. The output is continously updated and tracks the slowly varying 
amplitude A(t). This basic set-up is denoted Phase-Sensitive Detector (PSD) and is the 
core of the instrument currently called  Lock-in Amplifier.

𝑇% = 𝑅𝐶

Constant-param.
Low-Pass Filter

With averaging performed by a gated integrator, the amplitude A can be 
measured only at discrete times (spaced by at least the averaging time 2T ). 
However, by employing a constant-parameter low-pass filter instead of the GI, 
continuous monitoring of the slowly varying amplitude A(t) is obtained. 
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Principle of the Lock-in Amplifier (LIA) 25

𝑦! ∝ 𝐴
𝐴

quasi-DC 
Output signal

Input signal

Reference

z(t) = x(t) · m(t)
𝑥 𝑡 = 𝐴 cos 𝜔+𝑡

𝑚 𝑡 = 𝐵 cos 𝜔+𝑡

Analog
Multiplier

R

C

wF(α) LPF weighting f. 

The constant parameter LPF performs a running average of z(t) over a few TF
that continously updates the output

𝑇" = 𝑅𝐶

Constant-param.
Low-Pass Filter

𝑦 𝑡 = >
01

1
𝑧 𝛼 𝑤2 𝛼 𝑑𝛼 = >

01

1
𝑥 𝛼 𝑚 𝛼 𝑤2 𝛼 𝑑𝛼

𝑦 𝑡 = >
01

1
𝑥 𝛼 𝑤3 𝛼 𝑑𝛼

By comparison with the definition of the LIA weighting function wL(α)

𝑤# 𝛼 = 𝑚 𝛼 ⋅ 𝑤$ 𝛼

we see how the demodulation and LPF are combined in the LIA 

𝑊3 𝑓 ≅ 𝑀 ∗ 𝑊2
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Weighting Function wL of the Lock-in Amplifier 26

fm-fm f

|X|

f

f

t

t

t

t

fm-fm f

fm-fm

|M|

𝑤3 𝛼 = 𝑚 𝛼 ⋅ 𝑤2 𝛼
𝑊# 𝑓

𝑚 𝑡 = 𝐵 cos 𝜔$𝑡

𝑥 𝑡 = 𝐴 cos 𝜔+𝑡
𝐴
2

𝐴
2

𝐵
2

𝐵
2

𝑊" =
1

1+ 2𝜋𝑓𝑇" #

1
2𝑇%

LPF noise 
bandwidth
(bilateral)

𝛼

𝛼

𝐵
2

LPF weighting function  wF Δ𝑓! =
1
2𝑇%

𝑊3 𝑓 ≅ 𝑀 ∗ 𝑊2
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S/N of the Lock-in Amplifier 27

fm-fm

|X|

ffm-fm

f

f

Sn 1/f noise

white noise

|W|2

𝐴
2

𝐴
2

𝐵
2

%
Δ𝑓! =

1
2𝑇%

SB

Input Signal (in phase)

Weighting

Noise density (bilateral)

𝑦& = 2
𝐴
2 ⋅
𝐵
2 =

𝐵
2 𝐴

𝑛'() = 2
𝐵
2

)
⋅ 𝑆* ⋅ Δ𝑓" =

𝐵)

2 ⋅ 𝑆* ⋅ Δ𝑓"

Output signal

Output Noise

𝑆
𝑁 #

=
𝑦!

𝑛%#&
=

𝐴
2𝑆'Δ𝑓(

𝑥 𝑡 = 𝐴 cos 2𝜋𝑓+𝑡

𝑆9: = 𝑆; +
𝑆;𝑓<
𝑓

Bilateral noise 
bandwidth of the LPF
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Output Noise
( .𝑆@A mean density in the LPF band)

Case of DC signal with LPF compared to AC signal with LIA 28

Out+

_

R2R4

R3 RT

VA

𝑥 𝑡 = 𝐴DC voltage supply
VA

R
C

𝑇" = 𝑅𝐶

LPF

Let us consider the set-up of the key example (measurement with resistive sensor) 
now with DC supply voltage VA equal to the amplitude of the previous AC supply. 
The signal now is a DC voltage equal to the amplitude A of the previous AC signal.
With a LPF equal to that employed in the previous LIA we obtain:

𝑦/ = 𝐴

𝑛=<% = 2D𝑆9 ⋅ 𝑓>9

Output signal 𝑆
𝑁 )

=
𝑦)

𝑛%)&
=

𝐴
1𝑆( 2 𝑓$(

This S/N may look better by the factor 𝟐 than the S/N obtained with the LIA, 
but is this conclusion true?
NO, such a conclusion is grossly wrong  because  .𝑺𝒏 ≫ 𝑺𝑩 !!

Δ𝑓2
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DC signal and LPF compared to AC signal and LIA 29

fm-fm

ffm-fm

f

f

1/f noise

white noise

|WF|2

Δ𝑓! = 2𝑓"!

SB

DC Input Signal

Weighting of the LPF

Noise density (bilateral)

𝑥 = 𝐴

𝑆9: = 𝑆; +
𝑆;𝑓<
𝑓

𝑆@

1

𝑋 𝑓 = 𝐴 ⋅ 𝛿 𝑓

.𝑆@ mean spectral density in 
the LPF band at f=0

𝑆D Spectral density 
in the LIA band at f = fm

A passband at f = 0 is a risk: 1/f noise gives  #𝑺𝒏 ≫ 𝑺𝑩 !! 
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Fake LIA passbands arise from imperfect modulation 30

• Ideally, the reference waveform should be a perfect sinusoid at frequency fm with 
amplitude B1

• In reality, deviations from the ideal can generate spurious harmonics at multiples  
kfm     (k = 0, 1, 2 ...) with amplitudes Bk (small Bk << B1 in case of small deviations) 

• Moreover, effects equivalent to an imperfect reference waveform can be caused by 
non-ideal operation (non-linearity)  of the multiplier

• Since it is

each spurious harmonic component of M(f) adds to the LIA weighting function WL
a spurious passband at frequency kfm with amplitude Bk and shape given by the LPF

• A fake passband at f = 0  is particularly detrimental even with small B0 << B1
because it covers the high spectral density of 1/f noise ....

• .... and unluckily any deviation from perfect balance of positive and negative areas 
of the reference produces a DC component with associated passband at f = 0 !!

𝑊E 𝑓 ≅ 𝑀 𝑓 ∗𝑊F 𝑓
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The ratio  .𝑆@/ 𝑆D> 𝑓G/𝑓@ >> 1 can match or exceed the amplitude ratio

so that the noise in the fake passband 𝑛HEIJ = 𝐵IJ ⋅ .𝑆@ ⋅ Δ𝑓@

can equal or exceed that in the correct passband

Fake LIA passband at f = 0 31

fm-fm

ffm-fm

f

f

|WL|2

SB

Imperfect reference
with DC component

LIA weighting function

Noise density (bilateral)

𝑆9 = 𝑆; +
𝑆;𝑓<
𝑓

𝑆@

𝑀 𝑓

𝐵0 ⋅ 𝛿 𝑓
𝐵&
2 ⋅ 𝛿 𝑓 − 𝑓$

𝑛HEKJ =
𝐵KJ

2
⋅ 𝑆D ⋅ Δ𝑓@

𝐵@!
𝐵0
2

%

𝑆@ = 𝑆D + 𝑆D
𝑓L
𝑓

Δ𝑓' = 2𝑓"'

𝐵A!

2𝐵@!


