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Sensors, Signals and Noise 1

COURSE OUTLINE

• Introduction

• Signals and Noise

• Filtering: Band-Pass Filters 2 – BPF2

• Sensors and associated electronics
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Band-Pass Filters 2 2

• Band-pass filtering with High-pass plus Low-Pass filters (CR - RC) 

• LCR  parallel Resonant Filter

• Pro’s and Con’s of real tuned filters
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Band-pass filtering with
High-pass plus Low-Pass filters

(CR - RC ) 

3
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RC lowpass plus CR highpass = bandpass 4

Cascaded two-cell filter: 
low-pass   T1 =R1C1 fp1= 1/2πT1
high-pass T2= R2C2 fp2= 1/2πT2
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With equal poles  T1  = T2 = T  and   fp1 = fp1= fp
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RC lowpass plus CR highpass = bandpass 5

Plots of |H(f)|  with fp = 1 

Linear – linear plot 
|H(f)|  vs.  f

Log – Log plot (Bode plot)
|H(f)|  vs.  f
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3dB-down Bandwidth of CR-RC 6
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White noise bandwidth of CR-RC 7

From the definition of white noise bandwidth  𝛥𝑓% (with unilateral SB)
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LCR  parallel Resonant Filter

8
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LRC parallel resonant filter 9
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Another basic parameter is the characteristic resistance Ro , which for the oscillation 
at ω=ωo represents the ratio
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we have

At the resonance frequency the reactive impedances cancel each other

that is 

(amplitude of voltage on C) / (amplitude of current in L )  
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LRC parallel resonant filter 10
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The δ-response h(t) is: 

• damped (real poles) if ,   that is

• critically damped (coincident real poles) if                  ,   that is

• oscillatory (complex poles)                        if ,    that is

The higher is R with respect to Ro , the lower is the dissipation

and the slower the damping of the oscillation
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Starting from the poles:

We can study the behavior of its  δ-response: 
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Resonator Quality Factor Q 11

The energy E stored in the circuit oscillates from C to L and back while it decays 
exponentially due to dissipation in R.  

The lower is the loss rate, the higher is the resonator quality. 
The reciprocal of this loss rate is defined Quality Factor Q of the resonator

that is we can calculate−
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The higher is R >> Ro the lower is the dissipation (Q à ∞  for  R à ∞)
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the transfer can be expressed in terms of resonance frequency ωo and quality factor Q 
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LRC resonant filter: δ-response 12
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LRC resonant filter transfer function: phase 13

For ω à + ∞ |H| à 0     ϕ = arg H(ω) à - π/2  (- 90°)

For ω à - ∞ |H| à 0     ϕ = arg H(ω) à + π/2 (  90°)
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For  ω = ωo H(ωo) = 1    ϕ = arg H(ωo) = 0     and

The phase impressed by the filter is exactly zero at exactly the band center, 
but rapidly increases as ω is shifted. 

Note that the higher is Q the steeper is the increase
𝑑𝜑
𝑑𝜔

∝ 𝑄
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LRC resonant filter transfer function: phase 14
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LRC resonant filter transfer function: module 15
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• «Lower wing» approximation valid for  ω << ωo

i.e.                             

• «Higher wing» approximation valid for  ω >> ωo

i.e. 

• «Central lobe» approximation valid for |ω – ωo|<< ωo , that is for  ω ≈ ωo
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LRC resonant filter transfer function: module 16
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LRC resonant filter transfer function: module 17
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LRC resonant filter transfer function module 18
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LRC resonant filter: signal bandpass 19

Bandwidth for signals:   defined by the 3dB down points ω dL and ωdH
where |H(ωdL)|2 = |H(ωdH)|2 = ½

For cases with Q >> 1 we can use the central lobe approximation

and we find  

The signal bandwidth thus is 
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Two basic advantages with respect to the CR-RC bandpass filter are quite evident: 
• No signal attenuation at the center frequency 
• Narrow filtering bandwidth even with moderately high Q values
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LRC resonant filter: noise bandpass 20

The bandwidth for white noise is defined by

In cases with Q >> 1 we can use for H(f) the central lobe approximation and 
take into account that |Hc(f)|2 is with good approximation symmetrical with 
respect to the band center f0 , thus obtaining 

and therefore
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Pro’s and Con’s 
of real tuned filters

21
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Issues, Pro’s and Con’s of real tuned filters 22

• Real capacitors and inductors are not pure C and L. Their equivalent circuits 
include also finite resistances that model the internal sources of energy 
dissipation that inherently limit the Q of resonant circuits.

• In general, the dissipation is higher in components with higher value of L or C. 
Good quality capacitors  with low dissipation are available from pF to about 1 μF. 
Inductors are more problematic than capacitors. Good quality components are 
available from nH to a few 100nH. Even components with fairly small L (typically 
a few 10 nH) have non negligible internal resistance. 

• Stray reactances must not be overlooked. In discrete circuitry stray capacitances 
are in the order of pF and stray inductances are in the order of nH. In integrated 
circuits the values are much smaller, thanks to the very small physical size of 
the components.

• Since the resonance is  at                            ,  for obtaining a low frequency fo
high values of both L and C are required: in fact, with C=1 μF and L= 100 nH one 
gets  fo =1,26 MHz. Therefore, the Q values really obtained in the tuned filters 
progressively decrease as the desired resonant frequency decreases.

𝑓! =
1
2𝜋𝐿𝐶
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Issues, Pro’s and Con’s of real tuned filters 23

• For high frequencies  fo > 100MHz values of Q > 10 are currently obtained, up 
to almost Q ≈ 100 with clever design and high quality components.

• For intermediate frequencies  1MHz < fo < 100MHz values up to Q ≈ 10 are 
obtained with careful design and implementation

• For fo < 1MHz it becomes progressively more difficult to obtain  high Q values 
as the frequency decreases. Anyway, even with moderate Q the performance of 
the tuned filters is remarkable and in many practical cases filters with Q ≈ 5 are 
really satisfactory. 

• For a given Q, note that the noise bandwidth is reduced as the resonant 
frequency fo is reduced:   𝛥𝑓% =

<
$
=)
>

  .

Constant-parameter tuned filters are a simple and economical solution, widely
employed in prefiltering stages and other simple situations, but their use in high-
performance filtering is hindered by some intrinsic drawbacks.
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Issues, Pro’s and Con’s of real tuned filters 24

• The accuracy and relative stability of fo directly depends on that of  the C and 
L values. Drift of fo due to aging and temperature must be kept smaller than 
the filter bandwidth, in order to avoid uncontrolled variation of the output signal
amplitude and phase. This may be really difficult in case of very narrow bandwidth.
In particular, strong phase variations are caused by even small variations of fo
because of the strong dϕ/df at band-center of filters with high Q

• Cascading simple filter stages for improving the cutoff characteristics is not practical 
for narrow-band filters, because they should have very accurately equal and stable fo.

• The value of C influences both the center frequency fo and the bandwidth 𝜟𝒇𝒔 , 
so that it is not easy to design a filter with specified fo and specified  𝛥𝑓3 . 

• It is even more difficult to design a filter with adjustable fo  and constant bandwidth 
𝛥𝑓3 , as it is required for measuring power spectra and for other applications.

• In cases where the frequency of a narrow-band signal is not very stable, a filter 
with very narrow bandwidth can be employed only if its center frequency can be 
adjusted to track that of the signal. As above outlined, this is not easy to obtain.


