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Sensors, Signals and Noise 1

COURSE OUTLINE

• Introduction

• Signals and Noise

• Filtering: 1/f Noise and High-Pass Filters 1 - HPF1

• Sensors and associated electronics
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1/f Noise and High-Pass Filters 1 2

• 1/f Noise features

• 1/f Noise band-limits and power

• 1/f Noise Filtering

• Intrinsic High-Pass Filtering by Correlated Double Sampling  (CDS)

• Correlated Double Sampling  with Filtered Baseline (CDS-FB)

• Correlated Double Filtering (CDF)
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1/f Noise features

3
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1/f Noise 4

Random fluctuations with power spectral density 

• first  reported in 1925 as «flicker noise» in electronic vacuum tubes

• ubiquitous, observed in all electronic devices

• with very different intensity in different devices: 
very strong in MOSFETs;  moderate in Bipolar Transistors BJTs;
moderate in carbon resistors; ultra-weak in metal-film resistors; etc. 

• observed in many cases also outside electronics:
cell membrane potential; insulin level in diabetic blood; brownian motion; 
solar activity; intensity of white dwarf stars; ocean current flux;  
frequency of atomic clocks; ...  and many others

• Basic distinction between 1/f and white noise:
time span of interdependence between samples

for white noise: samples are uncorrelated even at short time distance
for 1/f noise: samples are strongly correlated even at long time distance

𝑆(𝑓) ∝
1
𝑓
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1/f Noise features 5

• 1/f noise arises from physical processes that generate a
random superposition of elementary pulses with random pulse duration 
ranging from very short to very long.

• The real observed power density at low frequency is often not exactly 

but rather                      with α close to unity,  i.e.   0,8 < α <1,2

anyway the behavior of such noise is well approximated by 1/f density

∝
1
𝑓

∝
1
𝑓 !

E.g. in MOSFETs 1/f noise arises because:
a) carriers traveling in the conduction channel are randomly captured by local trap 

levels in the oxide, stop traveling and stop contributing to the current
b) trapped carriers are later released by the level with a random delay
c) the level lifetime (=mean delay) strongly depends on how far-off is from the 

silicon surface (= from the conduction channel) is the level in the oxide
d) trap levels are distributed from very near to very far from silicon, 

lifetimes are correspondingly distributed from very short to very long
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1/f Noise specification 6

• Spectral density noise power                                 (with unilateral Sf)     

• circuits and devices have both 1/f noise Sf and white noise SB

𝑆 = 𝑆! +
𝑃
𝑓

• Sf is specified in relative terms referred to the white noise SB
by specifing the «corner frequency» fc at which Sf = SB

𝑆"(𝑓) =
𝑃
𝑓 𝑛!" = #

#

$%
𝑃
𝑓 𝑑𝑓

Linear diagram Bode diagram

𝑆 = 𝑆! +
𝑃
𝑓

Log ff

Log S

dB

S

fc fc
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• The 1/f  noise corner frequency fc is defined by

𝑃
𝑓'

= 𝑆( hence 𝑃 = 𝑆(𝑓'

NB:  the higher is frequency fc
the stronger is the role of 1/f noise

and for a given SB , the higher is the intensity P

1/f Noise specification 7

Typical values for low-noise voltage amplifiers :

• SB a few 10 -18 V2/Hz    à a few

• fc 10Hz to 10kHz,   that is

• P a few 10-17 to a few 10 -14 V2 à from a few nV to a few 100 nV

𝑆(

𝑃

𝑛𝑉
𝐻𝑧
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1/f Noise band-limits and power

8
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1/f Noise bandlimits and power 9

The ideal 1/f noise spectrum runs from f = 0 to f à∞ and has divergent power 𝑛"# à∞
(recall that also the ideal white spectrum has 𝑛$# à∞)

A real 1/f noise spectrum has span limited at both ends and is not divergent. 

If there is  wide spacing between the high-frequency and low-frequency limitations
they can be approximated by sharp cutoff at low frequency fi and high frequency fs >> fi
and the noise power can be evaluated as *

The actual 1/f bandlimits fs and/or  fi of given filter types will be illustrated later.
--------------------------------------------------
* Beware !  

ONLY if  fS >> fi the sharp cutoff gives a GOOD APPROXIMATION of the noise power !

𝑛"# ≈ *
"&

"'
𝑃
𝑓
𝑑𝑓 = 𝑃 ln

𝑓%
𝑓&

= 𝑆$𝑓' ln
𝑓%
𝑓&

𝑛"# = *
(

)
𝑃
𝑓
𝑑𝑓 → ∞
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1/f Noise bandlimits and power 10

𝑛"# ≈ *
"&

"'
𝑃
𝑓
𝑑𝑓 = 𝑆$𝑓' ln

𝑓%
𝑓&

NOTE THAT:

• 𝑛"# is divergent for fs à∞ (like white noise). 
A limit at high frequency is necessary for avoiding divergence, 
but in real cases a finite limit always exists.

• 𝑛"# is divergent for fi à 0   (like random-walk noise 1/f2). 
A limit at low frequency is necessary for avoiding divergence, 
but we will see that in real cases there is always a finite limit

• 𝑛"# depends on the ratio  fs / fi and NOT the absolute values fs  and  fi

In cases with widely spaced bandlimits  fS >> fi the 1/f noise power  𝑛"# is  
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1/f Noise bandlimits and power 12

𝑛"# ≈ *
"&

"'
𝑃
𝑓
𝑑𝑓 = 𝑆$𝑓' ln

𝑓%
𝑓&

Note 1: 𝒏𝒇𝟐 is SLOWLY divergent for  fi à 0 or fs à ∞

Logarithmic dependence à 𝑛"# slowly increases with fs / fi

e.g : x 10 multiplication of fs / fi à + 2,3 addition to  ln (fs / fi )

EXAMPLE: 1/f noise with                                            

a) filtered with fi = 1kHz and fs = 10kHz     ( fs / fi = 10)

b) filtered with  fi = 1 Hz and fs = 10MHz     (fs / fi = 107 , i.e.  x 106 higher) 

𝑃 = 𝑆$𝑓, = 100𝑛𝑉

𝑛",$% = 2,3 𝑆!𝑓& = 151𝑛𝑉

𝑛",'% = 7 ⋅ 2,3 𝑆!𝑓& = 401𝑛𝑉 (just x 2,7 higher) 
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1/f Noise bandlimits and power 13

𝑛)* ≈ '
)!

)"
𝑃
𝑓
𝑑𝑓 = 𝑆(𝑓' ln

𝑓+
𝑓,

Note 2 : reasonably approximate bandlimits are adequate for estimating 𝑛"#

it is not necessary to know very precisely  fs and fi !!

EXAMPLE: for 1/f noise with                                              we estimate

a) with bandlimits  fi = 1kHz and fs = 10kHz

b) with bandlimit fs corrected  to                                                 ( 50% higher)

(just 10 % higher )

𝑃 = 𝑆!𝑓( = 100𝑛𝑉

𝑛",$% = 2,3 𝑆!𝑓& = 151𝑛𝑉

𝑓+- =
𝜋
2
𝑓+ = 15,7 𝑘𝐻𝑧
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1/f Noise Filtering

14
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1/f Noise filtering and power 15

• 1/f noise: filtered power 𝒏𝒇𝟐 ∝ area of  |𝐖|𝟐 plot in logarithmic frequency scale

which is different from the case of

• white noise: filtered power 𝒏𝑩𝟐 ∝ area of  |𝐖|𝟐 plot in linear frequency scale

𝑛"% = 𝑆! 𝑓&+
)

*

𝑊(𝑓) %
𝑑𝑓
𝑓 = 𝑆! 𝑓& +

+*

*

𝑊(𝑓) %𝑑(ln 𝑓)

Filtering of 1/f noise can be better understood by changing variable from  f to  lnf
(beware: it’s  NOT A BODE diagram: the vertical scale is linear !!)

In both cases the noise power depends mainly on the frequency span covered by 
|𝐖|𝟐 , delimited by upper and lower bounds in frequency. However, the frequency 
span is measured differently :

• for white noise, by the difference of the bounds

• for 1/f noise, by the logarithmic difference, i.e. by the ratio of the bounds
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1/f Noise filtering and power 16

• The band-limits of a filter for white noise  are well visualized in the linear-linear 

diagram of the weighting function | )𝑊(𝒇 |# : 

the simple equivalent weighting function is rectangular with area and height 

equal to the true weighting  | )𝑊(𝒇 |#

• The band-limits of a filter for 1/f noise are well visualized in the linear-log 

diagram of the weighting function | )𝑊(𝐥𝐧𝒇 |# : 

the simple equivalent weighting function is rectangular with area and height 

equal to the true weighting  | )𝑊(𝐥𝐧𝒇 |#
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Noise bandlimit: RC integrator 17

f

|W|2

lin-log plot
|W|2 vs. Log f

lin-lin plot
|W|2 vs.  f

log f

f=0

f=0−∞

fP

fP fF  ≈ fP  Bandlimit for 1/f Noise

fn = πfp / 2 Bandlimit for white Noise

|W|2

Equivalent weighting for white noise

True weighting

True weighting

Equivalent weighting for 1/f noise

R
C

𝑊 # =
1

1 + 2𝜋𝑓𝑅𝐶 #
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Noise bandlimits: RC lowpass plus CR highpass 18

f

|W|2

Lin-Lin plot

|W|2

Lin-Log plot

Log f

Cascaded two-cell filter: 
low-pass TRC =R1C1
high-pass TCR= R2C2

𝑊 %

=
1

1 + 2𝜋𝑓𝑅,𝐶, % ⋅
2𝜋𝑓𝑅%𝐶% %

1 + 2𝜋𝑓𝑅%𝐶% %

R1

C1

C2

R2

Example plotted with 
TRC = 1
TCR= 1000

Equivalent for 
white noise

Equivalent 
for 1/f noise

𝑓#$ =
𝜋
2 𝑓%&

𝑓#' =
𝜋
2 𝑓%(

𝑓". = 𝑓/#𝑓)' = 𝑓%(
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Intrinsic High-Pass Filtering
by

Correlated Double Sampling CDS

19



Signal Recovery, 2022/2023 – HPF1                             Ivan Rech

Intrinsic High-Pass Filtering 20

• In all real cases, even with DC coupled electronics: 

weighting is inherently NOT extended down to zero frequency, 

because an intrinsic  high-pass filtering is present in any real operation. 

• The intrinsic filtering action arises because:

a) operation is started at some time before the acquisition of the measure and

b) operation is started from zero value 

• EXAMPLE: measurement of amplitude of the output signal of a DC amplifier. 
Zero-setting is mandatory: the baseline voltage is preliminarly adjusted to zero, 
or it is measured, recorded and then subtracted from the measured signal. 
It may be done a long time before the signal measurements (e.g. when
the amplifier is switched on) or repeated before each measurement; it may be 
done manually or automated, but it must be done anyway. 
Zero-setting produces a high-pass filtering: let us analyze why and how
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Zero-setting by Correlated Double Sampling (CDS) 21

Baseline sample subtracted from signal sample, both acquired with instant sampling

𝑤$(𝑡) = 𝛿(𝑡) − 𝛿(𝑡 + 𝑇)
0T

δ(t+T)

δ(t)
t

wB

Frequency-domain weighting

𝑊$(𝜔) = 𝐹[𝑤$(𝑡)] = 1 − 𝑒&01 = 1 − cos𝜔 𝑇 − 𝑖 sin𝜔 𝑇

For noise 𝑊$(𝜔) # = 1 − cos𝜔 𝑇 # + sin#𝜔𝑇 = 2 [1 − cos𝜔 𝑇]

At ωT<< 1 a low frequency cutoff  is produced

𝑊((𝜔) * ≈ 𝜔*𝑇* (for x << 1 it is sinx≈x and cosx ≈  1 – x2/2)

Time-domain weighting

𝑊!(𝜔) % = 4 sin%
𝜔𝑇
2

We can also write [since it is (1-cosx) = 2 sin2(x/2) ]

cos𝜔 𝑇 = 2
#
(𝑒&01+ 𝑒3&01)   sin𝜔 𝑇 = 2

#&
(𝑒&01 − 𝑒3&01) Since:



Signal Recovery, 2022/2023 – HPF1                             Ivan Rech

CDS vs. CR High-Pass Filter: Cut-Off 22

Baseline subtraction with delay T

at low-frequency  ω << 1/T 

High-Pass CR filter (differentiator)

at low-frequency  ω << 1/RC 

𝑊*(𝜔) & = 4 sin&
𝜔𝑇
2

𝑊$(𝜔) # ≈ 𝜔#𝑇#

𝑊(-(𝜔) % =
𝜔%𝑅%𝐶%

1 + 𝜔%𝑅%𝐶%

𝑊,4(𝜔) # ≈ 𝜔#𝑅#𝐶#

|WCR|2

|WB|2

|W|2

dB

Log f

BODE DIAGRAM
highlights

the low-freq cutoff

Examples with
equal cutoff T=RC
plotted for T=1 
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CDS vs. CR High-Pass Filter: 
White Noise

23
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CDS vs. CR High-Pass Filter: White Noise 24

f

|WB|2

|WCR|2

|W|2

LIN –LIN DIAGRAM
white noise power ∝ area of |W|2 

NB: examples with
equal cutoff T=RC
plotted for T=1 

White noise 𝑛$# limited also by a low-pass fs , but with  fs >> 1/T  and fs >> 1/RC 

𝑛$# = 𝑆$*
(

"(
𝑊(𝑓) 2 𝑑𝑓

CDS: |WB|2 oscillates around 2; its area is exactly the same as for a constant |WB|2 = 2

CR:    |WCR|2 has a cutoff at low frequency f < fi =1/4RC; at higher frequency it is |WCR|2 ≈1

Therefore, for white noise the output power of the CDS is double of the unfiltered noise 
and approximately double of the filtered output of the CR (actually even more than double !)

2|WCR|2
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CDS vs. CR High-Pass Filter: White Noise 25

With Baseline sampling & subtraction

that is

With CR high-pass filter

and since   fs  >> fi

𝑛!% = 𝑆!+
)

"!
𝑊(𝑓) 2 𝑑𝑓

𝑛$# = 𝑆$*
(

"(

2 ⋅ [1 − cos𝜔 𝑇] 𝑑𝑓

𝑛$# = 2 𝑆$𝑓5

𝑛$# = 𝑆$(𝑓5 − 𝑓&)

𝑛$# ≈ 𝑆$𝑓5

Double White noise power, as intuitive because:
1. white noise is acquired twice, in the baseline sampling and in the signal sampling. 
2. The two noise samples are uncorrelated, hence their power is quadratically added.
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Filtering Band-Limited White Noise by CDS:
time-domain analysis gives further insight 

26

Tδ(t+T)

δ(t)

t

wB

T
δ(τ +T)

2δ(τ)

τ

kwwB

T

τ

Rxx

δ(τ -T)

Tn

CDS weighting function

Autocorrelation of CDS weighting function

Autocorrelation of band-limited white noise

Tn noise autocorrelation time
fn=1/4Tn noise band-limit

𝑅"" 𝜏 = 𝑛"#𝑒
$|&|'!
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Filtering band-limited White Noise by CDS 27

𝑛*" = #
+%

%
𝑅
,,

𝜏 𝑘--* 𝜏 𝑑𝜏 = 2𝑛," − 𝑅,, 𝑇 − 𝑅,, −𝑇

𝑛*& = 2𝑛,& ⋅ 1 − 𝑒-
.
..

• Noise with very short correlation time (i.e. very high band-limit) is doubled:

if                    we have

• Noise with long correlation time (i.e. very low band-limit) is strongly attenuated:

if                    we have

𝑛(# ≈ 2𝑛"#

Time-domain analysis clearly shows how with band-limited white noise the 

output noise power of CDS is double of that of a CR constant-parameter filter 

with equal cutoff, i.e. with TF = RC = T

1 T/Tn0

𝑛!
"

𝑛#"

2
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Filtering band-limited White Noise by CR 28

δ(t)

t

wCR

δ(τ)

τ

kδδ=δ(t)

CR weighting function

autocorrelation of the CR weighting function

τ

τ

τ

wF 1
𝑇)

1
𝑇)

1
2𝑇)

1
2𝑇)

𝑤*+ = 𝛿 𝑡 − 𝑤) 𝑡 = 𝛿 𝑡 −
1
𝑇)
exp −

𝑡
𝑇)

𝑇! = 𝑅𝐶

kFF autocorrelation of wF

kδF + kFδ crosscorrelations δwF and wFδ

kwwCR

𝑘--/0 = 𝑘11 + 𝑘22 + 𝑘21 + 𝑘12
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Filtering band-limited White Noise by CR 29

τ1
2𝑇)

τ

Rxx

Tn

𝑛*" = #
+%

%
𝑅
,,

𝜏 𝑘--/0 𝜏 𝑑𝜏 =

= 𝑅,, 0 − 2#
#

%
𝑅
,,

𝜏
1
2𝑤2 𝜏 𝑑𝜏 =

= 𝑛," − 𝑛,"#
#

% 1
𝑇2
exp −𝜏

1
𝑇3
+
1
𝑇2

𝑑𝜏

𝑘--/0 𝜏 = 𝛿 𝜏 −
1
2𝑤2 𝜏 = 𝛿 𝜏 −

1
2𝑇2

exp −
𝜏
𝑇2

𝑅"" 𝜏 = 𝑛"#𝑒
$ &
'!

𝑛(# = 𝑛"# 1 −
𝑇,

𝑇) + 𝑇,
= 𝑛"#

𝑇)
𝑇) + 𝑇,

• Noise with very short correlation time (i.e. very high band-limit) is practically 

passed as it is, not doubled as for CDS:    if                    we have

• Noise with long correlation time (i.e. very low band-limit) is strongly attenuated 

at half the level of CDS:  if                    we have

𝑛!% ≈ 𝑛2%



Signal Recovery, 2022/2023 – HPF1                             Ivan Rech

CDS vs. CR High-Pass Filter: 
1/f Noise

30
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CDS vs. CR High-Pass Filter: 1/f noise 31

Log f

LIN –LOG DIAGRAM
1/f noise power ∝ area of |W|2

|WB|2

|WCR|2

|W|2

𝑛"% = 9
)

"!
𝑊(𝑓)

% 𝑆!𝑓(
𝑓 𝑑𝑓 = 𝑆!𝑓( 9

)

"!
𝑊(𝑓)

%

𝑑 ln 𝑓

1/f noise power 𝑛"# limited also by a low-pass fs , but with  fs >> 1/T  ( fs >> 1/RC) 

At low frequency f<<1/T the |WB|2 and |WCR|2 have the same cutoff (with T=RC).
At higher frequency WCR is constant |WCR|2 ≈1  whereas the |WB|2 oscillates around 
a mean value 2, so that : 

9
)

"!
𝑊!(𝑓)

%

𝑑 ln 𝑓 ≈ 2 9
)

"!
𝑊(-(𝑓)

%

𝑑 ln 𝑓

Examples with
equal cutoff T=RC
plotted for T=1 

2|WCR|2

fif fs
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CDS vs. CR High-Pass Filter: 1/f noise 32

Therefore

the 1/f noise power output of CDS is approximately double (actually even more than 
double!) with respect to a CR high-pass with equal cutoff, i.e. with RC=T

For the CR filter it will be shown that the high-pass band-limit for 1/f noise is

and

By comparing the cut-off behavior of CDS and CR, we can conclude that for CDS

and

𝑛), =>* = 𝑆(𝑓= ln
𝑓?
𝑓,)

𝑓&" ≈ 𝑓/ =
1

2𝜋𝑅𝐶

𝑛), (* ≈ 2𝑆(𝑓= ln
𝑓?
𝑓,)

𝑛), (* ≈ 2 𝑛), =>*

𝑓&" ≈
1
2𝜋𝑇
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Zero-setting by CDS: conclusions 33

• Zero-setting by correlated double sampling (CDS) produces a high-pass filtering action 

that limits the power of 1/f noise.  

• The interval T between zero setting and measure in most real cases is quite long (from 

a few seconds to several minutes) so that the high-pass  band-limit fif is quite low. This 

is a main drawback: the filtering is not very effective since the 1/f noise power is 

limited just to a moderately low level, which may be higher than that of white noise. 

• Further drawback: with respect to CR high-pass filter with equal bandlimit fif the 

output noise power is approximately double . This occurs because in the baseline 

sampling all frequency components are acquired, but in the subtraction only those with 

f<<1/T are really effective for reducing the 1/f noise. At higher frequencies

- components with  f= (2n+1) / 2T (n integer) have power enhanced  x 4

- components with f= n 1/T (n integer) are canceled, power is zero 

- at the intermediate frequencies the power varies between zero and x 4 (see diagrams)
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34

f

|WB|2

|WCR|2

|W|2
LIN –LIN DIAGRAM

white noise power ∝ area of |W|2 

NB: examples with
equal cutoff T=RC
plotted for T=1 

2|WCR|2

LIN –LOG DIAGRAM
1/f noise power ∝ area of |W|2

Log f

|WB|2

|WCR|2

|W|2

2|WCR|2

fif

for convenience, the diagrams reported in slides are here repeated
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Correlated Double Sampling 
with Filtered Baseline CDS-FB

35
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Correlated Double Sampling with Filtered Baseline CDS-FB 36

• Baseline sampling is intended to acquire the contributions of the low-frequency 
components that we want subtract from the measurement. 

• However, instant sampling acquires all frequency components at low and high 
frequency; by subtracting them all, we double the noise passed above the CDS cutoff. 

• Remedy: modify baseline sampling for acquiring only the low-frequency components; 
that is, sample with a low-pass weighting function wF(t) with band-limit  fFn , which 
includes only the frequencies to be subtracted. 
Example: noise with upper bandlimit  fS and baseline acquired by a Gated Integrator with 
narrower filtering band   ffn<<fS (recall 𝑓"G = ⁄1 2𝑇H with gate duraron TF )

𝑤*/(𝑡) = 𝛿(𝑡) − 𝑤0(𝑡 + 𝑇)

0

δ(t)

t

wB

TF

1
𝑇0

TP

𝑇 = 𝑇" +
𝑇!
2

𝑤5(𝑡) = 𝑟𝑒𝑐𝑡(−
𝑇5
2 ,
𝑇5
2 )

NB: we still consider cases with long interval TP >>TF from zero-setting to measurement 
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• At high frequency above the GI low-pass cutoff  (f >>  fn =1/2TF ) it is | )𝑊5(𝑓 | ≈ 0
so that | )𝑊!6(𝑓 |% ≈ 1

• In the intermediate range (1/T<< f << 1/2TF )  it is roughly  )𝑊5(𝑓 ≈ 1 so that roughly it is
| )𝑊!6(𝑓 |% ≈ 2 1 − cos2𝜋𝑓𝑇 . In this range the average value is about | )𝑊!6(𝑓 |% ≈ 2 , 
hence we can denote it as double-noise range

CDS-FB : Cut-off and Noise Filtering 37

𝑊*/(𝜔) = 𝐹[𝑤*/(𝑡)] = 𝐹 𝛿(𝑡) − 𝑤0(𝑡 + 𝑇) = 1 − 𝑒12.𝑊0(𝜔)

𝑊*/(𝜔) & = 1 +𝑊0
&(𝜔) − 2𝑊0(𝜔) cos𝜔 𝑇

𝑊!(𝜔) % ≈ 𝜔%𝑇% = 𝜔% 𝑇7 +
𝑇5
2

%
𝑓#$ ≈

1
2𝜋𝑇 =

1

2𝜋 𝑇" +
𝑇!
2

𝑊*/(𝜔) = 1 −𝑊0(𝜔) cos𝜔 𝑇 − 𝑖𝑊0(𝜔) sin𝜔 𝑇

since R𝑊H(𝜔) = sin𝑐 (0 14
#

is real at any ω , we have

• At low frequency  (f << 1/T) it is )𝑊H(𝑓 ≈ 1 and  WBI has a high-pass cutoff 
equivalent to a CR differentiator with RC=T

cutoff frequency
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CDS-FB : Cut-off and Noise Filtering 38

|WBI|2

Example of CDS-FB with TP = 101 and TF = 2 

for comparison, a CR filter with equal cutoff  RC = T = TP +TF is reported

fif
fSfFn

Noise 
band-limit 

GI 
low-pass

band-limit 

CDS-FB 
high-pass

cut-off

CDS-FB

CR high-pass
filter

approximation
for the high 

frequency range

approximation
for the double-noise

frequency range

2

1
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39

1/f noise

white noise

In CDS-FB the noise-doubling effect is strongly reduced with respect to the simple
CDS: it occurs only in the range from the low-frequency cutoff to the GI filtering band-
limit.
In cases where the GI band-limit is much smaller than the noise band-limit (fS >> fFn ) 
the effect of noise doubling is practically negligible 

𝑛# = *
(

"(
𝑆 𝑓 𝑊$I(𝜔) # 𝑑𝑓 = *

(

"(
𝑆 𝑓 1 +𝑊H

# − 2𝑊H cos 2 𝜋𝑓𝑇 𝑑𝑓

CDS-FB : output noise power 

𝑛$,$I# ≈ 𝑆$ 𝑓5 − 𝑓& + 𝑆$ 𝑓HG − 𝑓& ≈ 𝑆$𝑓5 + 𝑆$𝑓HG

𝑛), */& ≈ 𝑆*𝑓; ln
𝑓<
𝑓1)

+ 𝑆*𝑓; ln
𝑓0#
𝑓1)

𝑛", $I# ≈ 𝑆$𝑓, ln
𝑓5
𝑓&"

𝑛8,8:; ≈ 𝑆8𝑓<

By approximating WBI as outlined, the noise power can be approximately evaluated
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Correlated Double Filtering 
CDF

40



Signal Recovery, 2022/2023 – HPF1                             Ivan Rech

Correlated Double Filtering CDF 41

• In various cases of pulse-amplitude measurements, filtering by gated 
integrator (GI) is quite efficient for the white noise component, but not for 
the 1/f component.

• An improvement is obtained by subtracting from the GI acquisition of the 
pulse another GI acquistion over an equal interval before the pulse (or 
after it, anyway outside the pulse)

• This approach has the same conceptual foundation as CDS, but has the 
two samples filtered by the GI: it is therefore called «Correlated Double 
Filtering» CDF

• The approach can be extended to cases where a constant-parameter low-
pass filter LPF is employed for filtering the white noise component and  a 
1/f component is also present

• In such cases, the measure can be obtained as a difference of two samples 
of the LPF output: a sample taken at the pulse peak and a sample taken 
before the pulse (or after it, anyhow outside the pulse) 
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Correlated Double Filtering CDF 42

0

δ(α)

TF

1
𝑇0 T

TF

1
𝑇0

TF

1
𝑇0

- δ(α-T)

α

α

α

𝑤2(𝛼) = 𝑟𝑒𝑐𝑡#,6%(𝛼)

𝑤89 𝛼 = 𝛿 𝛼 − 𝛿 𝛼 − 𝑇

CDF weighting = convolution of CDS weighting with LPF weighting

CDF weighting  (NB: T ≥ TF)

CDS weighting

LPF weighting

𝑤=0(𝛼) = 𝑤=< 𝛼 ∗ 𝑤0 𝛼

𝑤85 𝛼 = 𝑤5 𝛼 − 𝑤5 𝛼 − 𝑇
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Weighting in frequency by CDF 43

Since in time domain 𝑤KH(𝛼) = 𝑤K5 𝛼 ∗ 𝑤H 𝛼

in frequency domain it is 𝑊KH(ω) = 𝑊K5 ω W 𝑊H ω

for noise computation |𝑊KH|# = |𝑊K5|# ⋅ |𝑊H|#

and since |𝑊K5|# = 2 1 − cos𝜔𝑇 = 4𝑠𝑖𝑛2(𝜔𝑇/2)

we have

The main features of CDS reflect the fact that it is a combination of CDS and LPF :
1. The LPF cuts the noise at high frequencies with its LPF band-limit fF

2. The CDS cuts the noise at low frequencies with its HPF band-limit  fiD ≈ 1/2πT
3. The CDS enhances the noise in the passband between the band-limits (with 

enhancement factor roughly 2)

𝑊72
" = 2 1 − cos𝜔𝑇 ⋅ 𝑊2

" = 4sin"
𝜔𝑇
2 ⋅ 𝑊2

"
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𝑊-)
# = 2 1 − cos𝜔𝑇 ⋅ 𝑊)

# = 2 1 − cos𝜔𝑇 ⋅ 𝑆𝑖𝑛𝑐#
𝜔𝑇)
2 = 4 sin#

𝜔𝑇
2 ⋅ 𝑆𝑖𝑛𝑐#

𝜔𝑇)
2

Weighting in frequency by CDF with GI 44

TF

1
𝑇0

α

𝑤2(𝛼) = 𝑟𝑒𝑐𝑡#,6%(𝛼)

LPF weighting

𝑤5(𝛼) = 𝑟𝑒𝑐𝑡),:.(𝛼) = 𝑟𝑒𝑐𝑡
+ :.

% ,
:.
%
(𝛼 −

𝑇5
2 ) ⇄ 𝑊5(𝜔) = 𝑆𝑖𝑛𝑐

𝜔𝑇5
2 𝑒+;<

:.
%

𝑊"(𝜔) = 𝑆𝑖𝑛𝑐
𝜔𝑇"
2 =

𝑠𝑖𝑛 𝜔𝑇"
2

𝜔𝑇"
2

but the module does not depend on the phase factor (i.e. on the time shift)

Therefore

𝑊85
% = 2 1 − cos𝜔𝑇 ⋅

𝑠𝑖𝑛% 𝜔𝑇5
2

𝜔𝑇5
2

% = 4
𝑠𝑖𝑛= 𝜔𝑇5

2
𝜔𝑇5
2

%that is
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Example of noise filtering by CDF with GI 45

Log f

|WDF|2dB

Computed for the case of time shift  T =  TF integration time =  1


