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Sensors, Signals and Noise 1

COURSE OUTLINE

• Introduction

• Signals and Noise

• Filtering: OPF2 Optimum Filtering 2

• Sensors and associated electronics
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Optimum Filtering for High-Impedance Sensors 2

• High impedance sensors and low-noise preamplifiers

• Noise whitening filter

• Matched filter

• Practical approximations of the optimum filtering
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High Impedance Sensors 
and Low-Noise Preamplifiers

3
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High-Impedance Sensors 4

• Let us consider sensors that are seen by the circuits connected to their terminals 
as generators of current signals with high internal impedance (typically a small 
capacitance CS with a high resistance RS in parallel)

• Typical examples are: p-i-n junction photodiodes and other photodetectors 
(CCDs, vacuum tube photodiodes, etc.); piezoelectric Force Sensors in quartz or 
other piezoelectric ceramic materials

• They have internal noise sources (e.g. shot current noise of a junction reverse 
current) modeled by a current noise generator in parallel to the signal generator

CS RS SiDIS

Sensor
Sensor Equivalent Circuit Sensor Equivalent Circuit 

approximation with very high RS

CS SiSIS

Sensor Signal Sensor Noise
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High-Impedance Sensors and Low-Noise Preamplifiers 5

Preamplifier equivalent circuit

• RiA = true physical resistance between the input terminals 
(NOT the dynamic input resistance modified by the feedback in the amplifier; e.g. 
not the low dynamic resistance of the virtual ground of an operational amplifier)

• Besides shot noise of bias currents, the SiA includes Johnson resistor noise of RiA

     𝑺𝒊𝑹 =
𝟒𝒌𝑻
𝑹𝒊

• The current noise directly faces the sensor current signal IS
if RiA is small the SiR is overwhelming  (e.g. with RiA = 50 Ω it is  𝑆!" ≈ 18 𝑝 ⁄𝐴 𝐻𝑧 ) 
and other components of  𝑆&' are much lower (about  1 𝑝 ⁄𝐴 𝐻𝑧 or lower )

• Conclusion: for low-noise operation of high-impedance sensors, 
it is mandatory to employ a preamplifier with high input resistance RiA

Approximation with very high RiA

RiASiA

SvA

CiA
SiA

SvA

CiA
𝑅!" →∞
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At the preamplifier output:
• The voltage noise spectrum Sn has two components, it is NOT white

• The voltage signal is a step with amplitude Q /CL

High-Impedance Sensors and Low-Noise Preamplifiers 6

Equivalent circuit of high-impedance Sensor and Preamplifier
(approximation valid for very high sensor resistance    𝑅( → ∞ )

• CL= CS + CiA total capacitance load               
• Sv =  SvA voltage noise generator (wideband white spectrum)

• Si =  SiD+ SiA current noise generator (wideband white spectrum)

𝑆! 𝜔 = 𝑆" +
𝑆#

𝜔$𝐶%$

CL
Si

Sv

𝑅#& → ∞

Current pulse 
Q to be measured

IS ≈ Q δ(t)
𝑄
𝐶#

Voltage pulse

𝑦 𝑡 =
𝑄
𝐶%
⋅ 1 𝑡
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We can define the Noise Corner resistance so that                           

• with  𝑆6 a few  ⁄𝑛𝑉 𝐻𝑧 and  𝑆& ranging from a few 0,1 to 0,01 ⁄𝑝𝐴 𝐻𝑧	
Rnc ranges from tens to hundreds of kOhms

• with CL from 0,1 pF to a few pF                                                                                              
Tnc ranges from a few nanoseconds to some hundreds of nanoseconds 

Noise Spectrum at Preamplifier Output 7

Crossing of the component defines
ωnc Noise-Corner angular frequency

𝜔!' =
𝑆#

𝐶% 𝑆(

log 𝑆!

log 𝜔𝑆!
𝐶#$𝜔$

𝑆%

𝜔!'

𝑆& 𝜔 = 𝑆' +
𝑆!

𝜔$𝐶#$

Tnc =1/ωnc Noise-Corner time constant

𝑆& =
𝑆'

𝐶()𝜔*+)

𝑇!' =
1
𝜔!'

=
𝑆(
𝑆#
𝐶%

𝑅!" =
𝑆#
𝑆$

𝑇*+ = 𝑅*+𝐶(

Tnc and ωnc are fundamental parameters of the optimum filter: we will see that
Tnc rules the duration of the filter weighting and ωnc the filter bandlimit
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Noise whitening filter

8
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Noise-Whitening Filter 9

log 𝑆!

log𝜔𝑆#
𝐶$𝜔$

𝑆(

𝜔,-

𝑆& = 𝑆'
1 +𝜔$𝑇&($

𝜔$𝑇&($

The noise spectrum has
• a pole at ωp = 0
• a zero at ωz = ωnc = 1/Tnc

𝑆! 𝜔 = 𝑆" 1 +
𝑆#

𝜔$𝑆"𝐶%$
= 𝑆" 1 +

1
𝜔$𝑇!'$

= 𝑆"
1 + 𝜔$𝑇!'$

𝜔$𝑇!'$

The noise whitening filter Hnw must
• cancel the pole with a zero at ω = 0
• cancel the zero with a pole at ω = ωnc = 1/Tnc

𝐻!- 𝜔 $ =
𝜔$𝑇!'$

1 + 𝜔$𝑇!'$

𝐻&) $ =
𝜔$𝑇&($

1 +𝜔$𝑇&($

𝜔,- =
1
𝑇,-

𝜔$𝑇!'$

1

log𝜔

log 𝐻,1 2

Cw

Rw

It is a simple high-pass filter

𝐻!- 𝜔 =
𝑗𝜔𝑅-𝐶-

1 + 𝑗𝜔𝑅-𝐶-

with   RwCw= Tnc
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Action of the Noise-Whitening Filter 10

Cw

Rw

𝐻*/ 𝑠 =
𝑠𝑅/𝐶/

1 + 𝑠𝑅/𝐶/

CL
Si

Sv

𝑅#& → ∞IS
Noise 

Whitening Filter
Hnw

𝑆! 𝜔 𝑆! 𝜔 ⋅ 𝐻!- 𝜔 $ = 𝑆(

it makes white the noise at its output

Simple high-pass CR filter

𝑦3 𝑡 =
𝑄
𝐶4
⋅ 1 𝑡 𝑧. 𝑡 =

𝑄
𝐶%
⋅ 1 𝑡 ⋅ exp −

𝑡
𝑇!'

NW Filter 

𝑌. 𝑠 =
𝑄
𝐶%
⋅
1
𝑠

𝑍0 𝑠 =
𝑄
𝐶(
𝑇*+ ⋅

1
1 + 𝑠𝑇*+

𝐻 =
𝑠𝑇,-

1 + 𝑠𝑇,-

𝑅/𝐶/ = 𝑇*+with

and changes the signal into a short exponential pulse with time-constant Tnc

Cancels pole at s=0
and replaces it by pole at s = - 1/Tnc

𝑦0 𝑡 𝑧0 𝑡
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Signal at the output of the Noise-Whitening Filter 11

CL
Si

Sv

𝑅#& → ∞

𝐻&) =
𝑠𝑇&(

1 + 𝑠𝑇&(

𝐼D

Input 
(current)

Preamp Output 
(voltage)

NW Filter Output 
(voltage)

δ – pulse Step pulse Exponential pulse
𝑄
𝐶#

𝑄
𝐶#

𝐼/ 𝑡 = 𝑄 ⋅ 𝛿 𝑡

Tnc

𝑦* 𝑡 =
𝑄
𝐶#
⋅ 1 𝑡 𝑧* 𝑡 =

𝑄
𝐶#
⋅ 1 𝑡 ⋅ exp −

𝑡
𝑇&(

𝐼+ 𝑠 = 𝑄 𝑍. 𝑠 =
𝑄𝑇!'
𝐶%

1
1 + 𝑠𝑇!'

𝑌. 𝑠 =
𝑄
𝐶%
⋅
1
𝑠

𝑦0 𝑡 𝑧0 𝑡

NW Filter 

The matched filter has to be tailored to the signal at the whitening filter output, 
i.e. it must have weighting function exponential with time constant Tnc
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Matched Filter

12
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The Matched Filter completes the Optimum Filtering 13

Noise 
Whitening Filter

Hnw𝑆! 𝜔

CL
IS

Si

Sv

𝑅! → ∞RL

In the case with finite load resistance RL the whitening filter is different but the output 
signal produced is the same as with RL à∞

Therefore, the matched filter is the same in the two cases

Matched 
Filter
wm𝑆?

OPTIMUM FILTER

𝑧. 𝑡 =
𝑄
𝐶%
⋅ 1 𝑡 ⋅ exp −

𝑡
𝑇!'

𝑤1 = 1 𝑡 ⋅
1
𝑇*+

exp −
𝑡
𝑇*+

𝑆
𝑁 HIJ

K
=
𝐴K

𝑆6
⋅ 2
LM

M
𝑏K 𝛼 𝑑𝛼

and gives the same result

𝑆
𝑁 HIJ

K
=
𝑄K

𝐶NK
𝑇OPK

𝑆6
2
LM

M
𝑤QK 𝛼 𝑑𝛼 =

𝑄K

𝐶NK
1
2
𝑇OP
𝑆6
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Optimum Filtering 14

• The optimum filter theory specifies what is the best S/N physically obtainable
and the kind of filter required for attaining  it

• The optimum filter can be implemented in reality, but the filter design turns 
out to be quite complex

• Furthermore, the optimum filter takes infinite time (after the signal onset) to 
complete its action, which is not acceptable in practice

• It is possible, however, to consider and evaluate fairly simple filters that 
approximate the optimum filter and closely approach its performance

𝑠2 = 6
3

4
𝑧5 𝛼 𝑤6 𝛼 𝑑𝛼 =

𝑄
𝐶(

1
𝑇*+

6
3

4
exp −

2𝛼
𝑇*+

𝑑𝛼 =
1
2
𝑄
𝐶(

𝑛0$ = 𝑆( ⋅ 𝑘-- 0 = 𝑆(
1
𝑇!'

U
1

2
exp −

2𝛼
𝑇!'

𝑑𝛼 =
𝑆(
2𝑇!'

@3

,34
= A

2
B
C5

2D67
38

At the output of the optimum filter (i.e. of the matched  filter) we have

Signal

Noise

S/N
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Practical approximations 
of the optimum filtering

15
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RC integrator Approximation of the Matched Filter 16

• The features of the matched filter weighting function observed in time and in 
frequency point out that it is a low-pass filter

• A simple RC integrator (single-pole low-pass filter) can be an approximation of the 
matched filter. With RC= Tnc its δ-response hF(t) is identical to the weighting function 
wM(t) of the matched filter.

• The RC weighting wF(t) has the same shape as wM(t) of the matched filter, but it’s 
not fully correct because it is reversed in time! 

t

ℎ, 𝑡 = 1 𝑡 ⋅
1
𝑇,
exp −

𝑡
𝑇,1

𝑇&(

t

δ-response with TF =Tnc

𝑤7 𝑡 = ℎ7 𝑡8 − 𝑡

tP

• Noise filtering is equal to the matched filter, since it is unaffected by time-inversion;
the output is white noise with band-limit set by a simple pole with time-constant TF .

• Signal filtering is different from the matched filter, since it is modified by time-inversion

weighting function for readout at tP
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RC integrator Approximation of the Matched Filter 17

peaking time tP = Tnc

Sensor output 
current

Whitening filter 
output

t

t

t

𝑧. 𝑡 =
𝑄
𝐶%
⋅ 1 𝑡 ⋅ exp −

𝑡
𝑇!'

ℎF 𝑡 = 1 𝑡 ⋅
1
𝑇F
exp −

𝑡
𝑇F

𝑄
𝐶#

1
𝑇&(

𝑄
𝐶#

Preamplifier 
output

t

δ-response of 
RC integrator

Output of
RC integrator

𝑦. 𝑡 =
𝑄
𝐶%
⋅ 1 𝑡

t

t

𝐼/ 𝑡 = 𝑄 ⋅ 𝛿 𝑡

Weighting function of 
RC integrator

with TF =Tnc

𝑢, 𝑡 = 𝑧* ∗ ℎ, =
𝑄
𝐶#

𝑡
𝑇&(

exp −
𝑡
𝑇&(

𝑤& 𝑡 = ℎ& 𝑡' − 𝑡
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RC integrator Approximation compared to 
the Optimum Filter 18

The RC output signal waveform is 

Signal peak value (at t = Tnc)

Noise

S/N

Comparing the RC approximation with the ideal optimum filter system we see that

𝑢9 𝑡 =
𝑄
𝐶%

𝑡
𝑇!'

exp −
𝑡
𝑇!'

𝑠F = 𝑢F 𝑇,- =
1
𝑒
𝑄
𝐶4

𝑛7) = 𝑆& ⋅ 𝑘99 0 =
𝑆&
2𝑇*+

𝑠F

𝑛F2
=
1
𝑒
𝑄
𝐶4

2𝑇,-
𝑆?

𝑆𝑁𝑅F =
2
𝑒 𝜂I ≈ 0,736 ⋅ 𝑆𝑁𝑅I

𝑠7 =
2
𝑒 𝑠2 ≈ 0,736 ⋅ 𝑠2

𝑛,$ = 𝑛-$

the performance of the filter system with RC approximation of matched filter is 
about 27% worse than the absolute optimum. 
Note that the loss is due to bad exploitation of the signal

the signal is lower

the noise is equal

the S/N is lower


