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Sensors, Signals and Noise 1

COURSE OUTLINE

• Introduction

• Signals and Noise

• Filtering: LPF1 Constant-Parameter Low Pass Filters

• Sensors and associated electronics
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Constant-Parameter Low-Pass Filters 2

• Low-Pass Filters as Basic Elements for Signal and Noise Filtering

• RC Integrator

• Mobile-Mean Low-Pass Filter

• Bandwidth and Correlation Time of Low-Pass Filters
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Low-Pass Filters as Basic Elements
for Signal and Noise Filtering

3
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Filtering signals and noise 4

SIGNALS AND NOISE
• Signals carry information, but are accompanied by noise
• The noise often is non-negligible and can degrade or even obscure the information
• Filtering is intended to improve the recovering of the information
• Filtering must exploit at best the differences between signal and noise, taking well 

into account what kind of information is to be recovered. For instance: in case of a 
pulse-signal, is it just the amplitude or is it the complete waveform?

LOW-PASS FILTERS
• We deal first with «low-pass filters» (LPF), so called because of their action in 

the frequency domain. The filtering weight is concentrated in a relatively 
narrow frequency band from zero to a limit frequency; above the band-limit it 
falls to negligible value.

• Correspondingly, in the time domain the weighting function has relatively 
wide time-width (as well as its autocorrelation). 

• The action of the filter as seen in time-domain is to produce approximately a 
time-average (i.e. a weighted average) of the input over a finite time interval, 
delimited by the width of the weighting function
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Low-pass filters LPF 5

To understand and to be able to deal with LPF is very important because:

a) LPF are a basic element of filtering and a foundation for gaining a better 
insight on all other kinds of filters and better exploit them.
For instance, a high-pass filter (HPF) can be obtained by subtracting from a 
given input the output of an LPF that receives the same input. In various 
real HPF, the physical structure of the HPF actually implements this scheme.

b)   LPF are employed in real cases of filtering  for information recovery
For instance, in many cases a wide-band noise accompanies signals that 
have significant frequency components in a relatively narrow frequency 
band around f=0 . 
These are not only the cases of DC and slowly varying signals, but also cases 
where the just the amplitude of a pulse signal (having fairly long pulse-
duration and known pulse shape) must be measured (and not the complete 
waveform) 
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RC-integrator

6
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RC integrator (constant-parameter LPF) 7
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RC integrator: viewpoints on |H(f)|2 8
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RC integrator (constant-parameter LPF) 9

R

Cx(t)

y(t)
Weighting function

in time
𝒘𝒎 𝜶 = 𝒉 𝒕𝒎 − 𝜶

tm

1
𝑇!

α

Output: can be seen as an average over a time interval ≈ 2Tf preceding tm

Weighting function 
in frequency

𝑊*(𝑓) ' = 𝐻 𝑓 '

𝑾𝒎(𝒇) 𝟐 =
𝟏

𝟏 + (𝟐𝝅𝒇𝑻𝒇)𝟐
f

Output: can be seen as a selection of the lower frequency components up to   ≈ fp

1

𝑊*(𝑓) '

fp



Signal Recovery, 2022/2023 – LPF-1 Ivan Rech

RC integrator: filtering wide-band noise:Time-domain analysis 10
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The noise is considered wide-band if it has autocorrelation much narrower 
than the filter weight autocorrelation, that is, if   Tn  <<  Tf

We can then approximate  𝑅.. ≅ 𝑆/0𝛿(𝜏) and obtain 
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RC integrator: filtering wide-band noise:
Frequency-domain analysis

11
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RC integrator: noise band-width 12

Noise bandwidth ff n of the filter: 

defined with reference to a white noise input Sb as the bandwidth value to be 
employed for computing simply by a multiplication the output mean square noise 

𝒚𝟐 = 𝑺𝒃𝑩 F 𝟐𝒇𝒇𝒏
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RC integrator active filter 13
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• still a constant-parameter filter
• same shape of the weighting

• dc gain =  :"
:#

instead of 1    

dc gain    𝑊*(0) = :"
:#

TIME DOMAIN

FREQUENCY DOMAIN



Signal Recovery, 2022/2023 – LPF-1 Ivan Rech

Mobile-Mean Low-Pass Filter

14
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Mobile-Mean Filter 15

y(t)

• A mobile-mean filter (MMF) produces at any time tm an output  y(tm) which is not 
just the integral of the input x(t) over a time interval Ta that precedes tm , but rather 
the mean value of the input x(t) over the time interval Ta , that is, the integral over 
Ta divided by Ta

• In order to obtain this, if we vary the averaging time Ta we must vary inversely the 
weight 1/Ta (this ensures constant area of wm(α) i.e. constant DC gain).

The MMF is a constant-parameter filter: this is pointed out by the weighting function, 
which is the same for any readout time tm 
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The Mobile-Mean Filter is a constant-parameter filter 16
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Mobile-mean filter versus RC-integrator 17
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The mobile-mean filter produces an output  y(tm) that is exactly the mean value of 
the input x over the time interval  Ta preceding  tm . 
When Ta is changed, the area of wm(α) is kept constant, similarly to the case of the RC 
integrator when  Tf is varied (the weight is reduced; the dc gain is kept constant)
Question: can we use a mobile-mean filter as equivalent to a given RC integrator for 
evaluating the result obtained by processing a signal with low-frequency content in 
presence of wide-band noise?
Answer: yes, the time Ta of  the mobile-mean filter can be adjusted to produce equal 
output rms noise of the given RC integrator.
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Mobile-mean filter equivalent to RC-integrator 18

Signal: the filters have equal DC gain (unity) and produce equal output  with DC signal in.
Noise: for wide-band input noise the output noise is computed as
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Mobile-mean filter equivalent to RC-integrator 19

The weighting functions of the two filters in frequency domain 
plotted with the same scales clearly illustrate  the equivalence

RC integrator 
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Band-Width and Correlation Time 
of Low-Pass filters

20
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«Rectangular» approximations of real filters 21

• The noise bandwidth ffn of a low-pass filter is currently employed for
evaluating the output noise of low-pass filters in frequency-domain
computations.

• A REAL filter that implements such a «rectangular weighting» in frequency
DOES NOT EXIST: it would be a non-causal system, with δ-response that begins
before the δ-pulse.

• A REAL filter that implements such a «rectangular weighting» in time
EXISTS: it is the mobile-mean filter with averaging time Ta = Tfn .

• There are, however, practical limitations to the implementation of mobile-
mean filters, mainly due to the impractical features and limited performance of
the real analog transmission lines with long delay, namely delay longer than a
few tens of nanoseconds.
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Other constant-parameter LPF 22
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Since    𝑧' = 𝑆/0 2𝑓5 , the noise bandwidth 𝑓5 is 
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𝟏
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For LPF filters with real poles, it is often easier to compute  the noise bandwidth
in time-domain rather than in frequency-domain,  because it implies simple integrals 
(of exponentials and powers of t). Example:  cascade of two identical RC cells

ℎ 𝑡 =
𝑡
𝑇!'

𝑒
# $
%!

𝑇! = 𝑅𝐶


