Sensors, Signals and Noise

COURSE OUTLINE

- Introduction
- Signals and Noise: 3) Analysis and Simulation
- Filtering
- Sensors and associated electronics

Noise Analysis and Simulation

- White Noise
- Band-Limited White Noise (Wide-Band Noise)
- Basic Parameters of Wide-Band Noise
- Foundations of White-Noise Filtering

White Noise

3

White Noise (stationary)

IDEAL «white» noise

is a concept extrapolated from Johnson noise and shot noise defined by its **essential** feature:

no autocorrelation at any time distance τ , no matter how small

In reality such a noise does not exist: it would have divergent power $n^2 \rightarrow \infty$

REAL «white» noise has

- Very small width of autocorrelation, shorter than the minimum time interval of interest in the actual case and therefore approximated to zero
- Very wide band with constant spectral density S_b, wider than the maximum frequency of interest in the actual case and therefore approximated to infinite

White Noise (non-stationary)

Also in non-stationary cases the IDEAL «white» noise is defined by the essential characteristic feature: no correlation at any finite time distance τ , no matter how small, but the noise intensity is no more constant, it varies with time tthat is the autocorrelation function is δ -like, but has time-dependent area $S_b(t)$

 $R_{nn}(t,t+\tau) = S_b(t) \cdot \delta(\tau)$

Filtering white noise is simple

For clarity, let's consider a discrete case:

linear filtering in digital signal processing:

- Sample n_1 at t_1 and multiply by a weight w_1 ,
- sample n_2 at $t_2 = t_1 + T_s$ and multiply by a weight w_2 and sum
- and so on

The filtered noise n_f is

$$n_f = w_1 n_1 + w_2 n_2 + \dots = \sum_{k=1}^N w_k n_k$$

and its mean square value is

$$\overline{n_f^2} = \overline{w_1^2 n_1^2 + w_2^2 n_2^2 + \dots + w_1 n_1 \cdot w_2 n_2 + w_1 n_1 \cdot w_3 n_3 + \dots} = w_1^2 \overline{n_1^2} + w_2^2 \overline{n_2^2} + \dots + w_1 w_2 \overline{n_1 n_2} + w_1 w_3 \overline{n_1 n_3} + \dots$$

Filtering white noise is simple

$$\overline{n_f^2} = w_1^2 n_1^2 + w_2^2 n_2^2 + \dots + w_1 n_1 \cdot w_2 n_2 + w_1 n_1 \cdot w_3 n_3 + \dots =$$
$$= w_1^2 \overline{n_1^2} + w_2^2 \overline{n_2^2} + \dots + w_1 w_2 \overline{n_1 n_2} + w_1 w_3 \overline{n_1 n_3} + \dots$$

If noise at interval T_s is **not correlated**, then all rectangular terms vanish

$$\overline{n_1 n_2} = \overline{n_1 n_2} = \dots = 0$$

and the result is simply a sum of squares, even in case of non-stationary noise

$$\overline{n_f^2} = w_1^2 \overline{n_1^2} + w_2^2 \overline{n_2^2} + \dots =$$
$$= \sum_{k=1}^N w_k^2 \overline{n_k^2}$$

If the noise is stationary

$$\overline{n_1^2} = \overline{n_2^2} = \overline{n_3^2} = \dots = \overline{n^2}$$

there is a further simplification

$$\overline{n_f^2} = \overline{n^2} (w_1^2 + w_2^2 + \dots) =$$
$$= \overline{n^2} \sum_{k=1}^N w_k^2$$

we will see later that also with continuous filtering white noise brings similar simplification

Ivan Rech

Band-Limited White Noise

or

Wide-Band Noise

Band-limited white noise (wide-band noise)

- **Real white noise** = white noise with band limited at high frequency
- The limit may be inherent in the noise source or due to low-pass filtering enforced by the circuitry. Anyway, in all real cases there is such a limit
- A frequent typical case is the **Lorentzian** spectrum: band limited by a **simple pole** with time constant T_p , pole frequency $f_p = 1/2\pi T_p$

$$R_{nn}(\tau) = \overline{n^2} e^{-\frac{|\tau|}{T_p}} \qquad \qquad S_n(f) = \frac{S_B}{1 + (2\pi f T_p)^2}$$

10

Basic Parameters of Wide-Band Noise

Simplified description of wide-band noise

The true $R_{nn}(\tau)$ and $S_n(f)$ can be **approximated retaining the noise main features**: a) equal **mean square** $\overline{n^2}$ and b) equal spectral **density** S_b

in time: $R_{nn}(\tau)$ triangular approx, half-width $2T_n$

- a) equal msq noise : $R_{nn}(0) = \overline{n^2}$
- **b) equal spectral density**: [area of $R_{nn}(\tau)$] = S_b , (i.e. $\overline{n^2} \ 2 \ T_n = S_b$)

Correlation width = $\Delta \tau = 2T_n$

in frequency: $S_n(f)$ rectang approx, half-width f_n a) equal msq noise : [area of $S_n(f)$] = $\overline{n^2}$ (i.e. $S_b 2 f_n = \overline{n^2}$) b) equal spectral density: $S_n(0) = S_b$ Noise bandwidth: $\Delta f = 2f_n$

Note that $\Delta \tau \cdot \Delta f = 1$ which is consistent with $S_n(f) = F[R_{nn}(\tau)]$

Simplified description of Lorentzian spectrum

Foundations of White-Noise Filtering

13

Noise filtering clarified by the Poisson pulse model

Noise is a random superposition of **elementary pulses**

The elementary pulse type (i.e. pulse waveform and its F-transform) defines the noise type (i.e. autocorrelation shape and spectrum shape)

The passage through a linear constant-parameter filter modifies the elementary pulse type

Noise filtering can thus be understood, studied and evaluated by understanding, studying and evaluating the filtering of the elementary pulses

Low-pass filtering of White noise

Shot current white noise: $S_i(f) \cong qI$ $R_{ii}(\tau) \cong qI\delta(\tau)$ Diode current: elementary short pulses

with rate p = I/q, $T_h \cong 100 ps$

 $qh(t) \cong q\delta(t)$

Current in R: elementary exponential pulses with rate p = I/q, $T_f = RC$

$$\frac{q}{T_f}$$

 $\frac{q}{T_h}$

$$f(t) = \frac{1}{T_f} 1(t) e^{-t/T_f} \qquad F(f) = \frac{1}{1 + j2\pi f T_f}$$

e.g. with $R = 100k\Omega$ and C = 10pF we have $T_f = 1\mu s$

Signal Recovery, 2021/2022 – Noise 3

Low-pass filtering of White noise: time domain view

Input noise (*current in the diode*): δ -like autocorrelation (width $\approx 100 ps$) $R_{ii}(\tau) \cong qI\delta(\tau)$ for $\tau >> 100 ps$

 $T_f = R \ C = 1 \mu s$

To compare msq values of noise **before** and **after** filtering compare the **central values** of autocorrelation functions

Output noise (*current in R*): autocorrelation function

$$R_{uu}(\tau) = qI \cdot k_{ff}(\tau)$$
$$k_{ff}(\tau) = \frac{1}{2T_f} e^{-\left|\frac{\tau}{T_f}\right|}$$

Low-pass filtering of White noise: frequency domain view

 $T_f = R \ C = 1 \mu s$

Input noise (diode current): spectral density S_i constant (bandwidth $f_i \approx 10 \text{ GHz}$)

$$S_i(f) = S_b$$
 for $f \ll 10 \text{ GHz}$

R _ _

C **To compare** msq values of noise **before** and **after** filtering compare the **areas** of input and output spectral densities

Output noise (*current in R*): spectral density function $S_u(f)$

$$S_u(f) = qI \cdot |F(f)|^2$$
$$|F(f)|^2 = \frac{1}{1 + (2\pi fT_f)^2}$$

