COURSE OUTLINE

- Introduction
- Signals and Noise: 2) Types and Sources
- Filtering
- Sensors and associated electronics

Noise Analysis and Simulation

- Noise in diodes (Schottky Noise)
- Noise in Resistors (Johnson-Nyquist Noise)
- White Noise
- Band-Limited White Noise (Wide-Band Noise)
- Basic Parameters of Wide-Band Noise

Noise in Diodes

Shot Noise (or Schottky Noise)

Real case: Shot current in a diode

- Random sequence of many independent pulses,
 i.e. «shots» due to single electrons that swiftly cross the junction depletion layer
- Pulses have rate p, charge q and very short duration T_h (shorter than transition times in the circuits)
- «Shot» current has mean value $I = p \cdot q$
- Shot current has fast fluctuations around the mean, called **shot noise** (or Schottky noise, after the name of the scientist who explained it)
 The technical literature reports that shot noise has constant spectral density

$$S_{nu} = 2qI$$
 unilateral density in $0 < f < \infty$

Diode Noise in forward bias

$$I = I_S \left(e^{\frac{qV}{kT}} - 1 \right) = I_S e^{\frac{qV}{kT}} - I_S$$

The diode current is the result of opposite shot components with mean values:

- a) $-I_S$ reverse current of minority carriers, which fall down the potential barrier
- b) $I_S e^{\frac{qV}{kT}}$ forward current of majority carriers, which jump over the potential barrier
- The **mean** current is the **difference** of the components
- The independent current **fluctuations are quadratically added** in the spectrum

$$S_{nU}(f) = 2qI_S e^{\frac{qV}{kT}} + 2qI_S = 2q(I + I_S) + 2qI_S = 2qI + 4qI_S$$

• In forward bias it is $I \gg I_S$ and the spectrum is

$$S_{nU}(f) \approx 2qI$$

At zero bias it is I=0 and the spectrum is

$$S_{nU}(f) \approx 4qI_S$$

Noise in Resistors (Johnson-Nyquist noise)

Resistor thermal noise (Johnson-Nyquist noise)

- The voltage V between the terminals of a conductor with resistance R shows random fluctuations that do not depend on the current *I*
- The technical literature reports that this noise has voltage spectral density S_{vU} constant up to very high frequency >> 1GHz: denoting by R the resistance and by T the absolute temperature it is

$$S_{vU}(f) = 2kTR$$
 (bilateral)

• This noise can be described also in terms of current in the conductor terminals: denoting by G=1/R the conductance, the current spectral density is

$$S_{iU}(f) = 2kTG$$
 (bilateral)

- This noise is known as **Johnson-Nyquist noise**, after the name of the scientists that first studied and explained it.
- It is generated by the agitation of the charge carriers (electrons) in the conductor in thermal equilibrium at temperature T

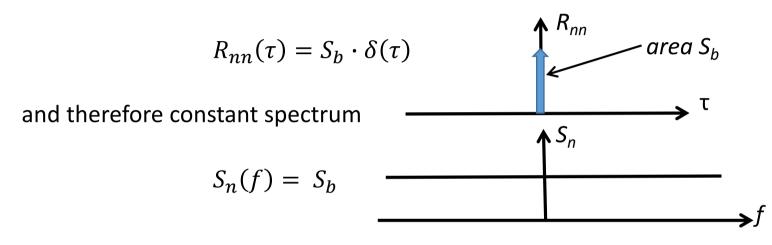
White Noise

White Noise (stationary)

IDEAL «white» noise

is a concept extrapolated from Johnson noise and shot noise defined by its **essential** feature:

no autocorrelation at any time distance τ , no matter how small



In reality such a noise does not exist: it would have divergent power $n^2 \rightarrow \infty$

REAL «white» noise has

- Very small width of autocorrelation, shorter than the minimum time interval of interest in the actual case and therefore approximated to zero
- Very wide band with constant spectral density S_b , wider than the maximum frequency of interest in the actual case and therefore approximated to infinite

White Noise (non-stationary)

Also in non-stationary cases the IDEAL «white» noise is defined by the **essential** characteristic feature:

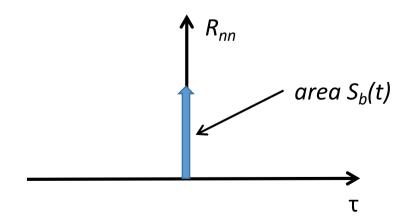
no correlation at any finite time distance τ , no matter how small,

but the noise intensity is no more constant, it varies with time *t* that is

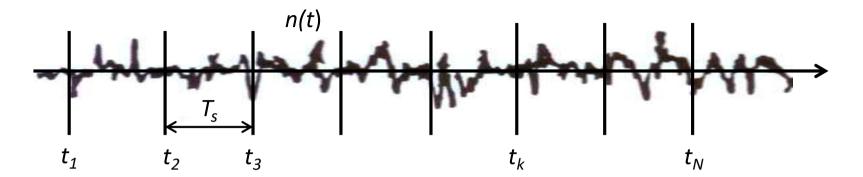
the autocorrelation function is δ -like,

but has time-dependent area $S_b(t)$

$$R_{nn}(t, t + \tau) = S_h(t) \cdot \delta(\tau)$$



Filtering white noise is simple



For clarity, let's consider a discrete case:

linear filtering in digital signal processing:

- Sample n_1 at t_1 and multiply by a weight w_1 ,
- sample n_2 at $t_2 = t_1 + T_s$ and multiply by a weight w_2 and sum
- and so on

The filtered noise n_f is

$$n_f = w_1 n_1 + w_2 n_2 + \dots = \sum_{k=1}^{N} w_k n_k$$

and its mean square value is

$$\overline{n_f^2} = \overline{w_1^2 n_1^2 + w_2^2 n_2^2 + \dots + w_1 n_1 \cdot w_2 n_2 + w_1 n_1 \cdot w_3 n_3 + \dots} =$$

$$= w_1^2 \overline{n_1^2} + w_2^2 \overline{n_2^2} + \dots + w_1^2 w_2 \overline{n_1 n_2} + w_1^2 w_3 \overline{n_1 n_3} + \dots$$

Filtering white noise is simple

$$\overline{n_f^2} = w_1^2 n_1^2 + w_2^2 n_2^2 + \dots + w_1 n_1 \cdot w_2 n_2 + w_1 n_1 \cdot w_3 n_3 + \dots =$$

$$= w_1^2 \overline{n_1^2} + w_2^2 \overline{n_2^2} + \dots + w_1 w_2 \overline{n_1 n_2} + w_1 w_3 \overline{n_1 n_3} + \dots$$

If noise at interval T_s is **not correlated**, then all rectangular terms vanish

$$\overline{n_1n_2} = \overline{n_1n_2} = \cdots = 0$$

and the result is simply a sum of squares, even in case of non-stationary noise

$$\overline{n_f^2} = w_1^2 \overline{n_1^2} + w_2^2 \overline{n_2^2} + \dots = \sum_{k=1}^{N} w_k^2 \overline{n_k^2}$$

If the noise is stationary

$$\overline{n_1^2} = \overline{n_2^2} = \overline{n_3^2} = \dots = \overline{n^2}$$

there is a further simplification

$$\overline{n_f^2} = \overline{n^2} (w_1^2 + w_2^2 + \dots) =$$

$$= \overline{n^2} \sum_{k=1}^N w_k^2$$

we will see later that also with continuous filtering white noise brings similar simplification

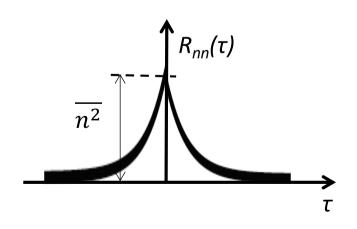
Band-Limited White Noise or Wide-Band Noise

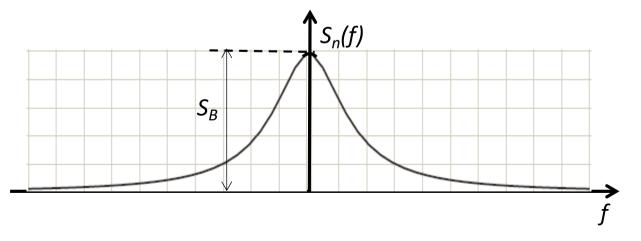
Band-limited white noise (wide-band noise)

- Real white noise = white noise with band limited at high frequency
- The limit may be inherent in the noise source or due to low-pass filtering enforced by the circuitry. Anyway, in all real cases there is such a limit
- A frequent typical case is the **Lorentzian** spectrum: band limited by a **simple pole** with time constant T_p , pole frequency $f_p = 1/2\pi T_p$

$$R_{nn}(\tau) = \overline{n^2} e^{-\frac{|\tau|}{T_p}}$$

$$S_n(f) = \frac{S_B}{1 + \left(2\pi f T_n\right)^2}$$



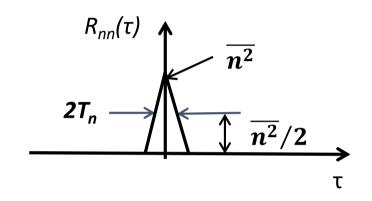


Basic Parameters of Wide-Band Noise

Simplified description of wide-band noise

The true $R_{nn}(\tau)$ and $S_n(f)$ can be approximated retaining the noise main features:

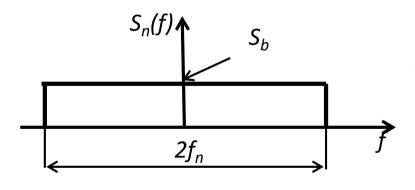
a) equal mean square $\overline{n^2}$ and b) equal spectral density S_b



in time: $R_{nn}(\tau)$ triangular approx, half-width $2T_n$

- a) equal msq noise : $R_{nn}(0) = \overline{n^2}$
- **b)** equal spectral density: [area of $R_{nn}(\tau)$] = S_b , (i.e. $\overline{n^2}$ 2 $T_n = S_b$)

Correlation width = $\Delta \tau = 2T_n$

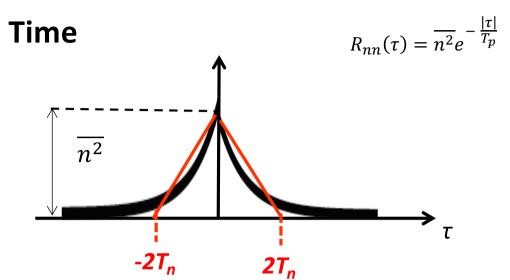


in frequency: S_n (f) rectang approx, half-width f_n

- a) equal msq noise : [area of $S_n(f)$] = $\overline{n^2}$ (i.e. $S_b 2 f_n = \overline{n^2}$)
- b) equal spectral density: $S_n(0) = S_b$ Noise bandwidth: $\Delta f = 2f_n$

Note that $\Delta \tau \cdot \Delta f = 1$ which is consistent with $S_n(f) = F[R_{nn}(\tau)]$

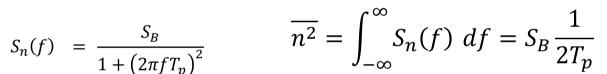
Simplified description of Lorentzian spectrum

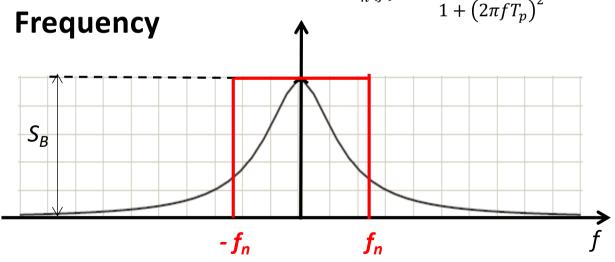


$$S_B = \int_{-\infty}^{\infty} R_{nn}(\tau) \ d\tau = \overline{n^2} \ 2T_p$$

$$T_n = T_p$$

$$S_n(f) = \frac{S_B}{1 + \left(2\pi f T_p\right)^2}$$





$$2f_n = \frac{1}{2T_p}$$

Note that $f_n \neq f_p$, namely $f_n = \frac{1}{4T_n} = \frac{\pi}{2}f_p$