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Sensors, Signals and Noise 

COURSE OUTLINE

• Introduction

• Signals and Noise: 1) Description

• Filtering

• Sensors and associated electronics
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Noise Description

• Noise Waveforms and Samples 

• Statistics of Noise Samples and Probability Distribution (PD) 

• Complete Description of Noise with Probability Distributions

• Basic Description of Noise with the 2°order Moments of PD

• Autocorrelation Function of Noise

• Power Spectrum of Noise
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SIGNIFICANT
Noise

of Sensor 

SIGNIFICANT
Noise

of Preamp circuits 
(or Front-end)

NEGLIGIBLE
Noise

of Filtering circuits
(hopefully!)

NEGLIGIBLE
Noise

of Meter circuits
(hopefully!)

Signal

Noise

PREAMPLIFIER
(or FRONT-END)

Set-Up for Sensor Measurements

SIGNAL NOISE
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FILTERING METERSENSOR 
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Noise Waveforms and Samples
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Noise waveforms  (oscilloscope @ 50μs/div)

White Noise 

spectrum S = constant

Random-Walk Noise 

spectrum 𝑺 = 𝟏
𝒇𝟐

Flicker Noise 

spectrum 𝑺 = 𝟏
𝒇
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Noise Waveform Ensemble

①

②

③

x(t)

t1

t

t

t

Set of identical noise sources (many identical amplifiers or resistors or other)

waveforms of noise 

x(t1) amplitude sample at time t1 on each waveform 

Source

Source

Source
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Statistics of Noise Samples 
and

Probability Distribution (PD)
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Classifying the Amplitude of Noise Samples

x(t)

t1
t

∆𝑥

Starting point: The amplitude x(t1) of the noise waveform at time t1

Measure:  x(t1) is compared to a scale of discrete values xk spaced by constant 
interval ∆𝑥 and is classified at the nearest value xk of the scale

A high number N of noise waveform is sampled and measured of which ∆𝑁! is the 
number of sample waveforms classified at xk 

∆𝒇𝒌 =
∆𝑵𝒌
𝑵

is called statistical frequency of the amplitude xk 
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Noise Sample Statistics and Probability
x(t)

t1
t

∆𝑥

N values x(t1) measured (in units  Δx) in N waveforms

ΔN0 in the central Δx  (around x=0)
ΔN1 in the first Δx (centered in x1= Δx) 
...........
ΔNk in the k-th Δx (centered in xk= kΔx)

statistical frequency of  xk is ∆𝑓! =
∆#!
#

• if ∆𝑥 → 𝑑𝑥   then   ∆𝑁! → 𝑑𝑁! = 𝑛 𝑥! 𝑑𝑥
    

• if  𝑁 → ∞   then     𝒅𝒇𝒌 =
𝒏 𝒙𝒌
𝑵

𝒅𝒙 = 𝒑 𝒙 𝒅𝒙

Histogram
of measured

x values

x

ΔN

x

p
p(x)

Probability Density 
of x values
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Stationary and Non-stationary Noise

t

t

STATIONARY noise : 
the probability density is constant in time  p = p(x) 

NON-STATIONARY noise : 
the probability density varies in time  p= p(x, t)

BEWARE!!
the probability density p alone does not give a complete description of the noise,

in fact different  cases can have equal probability density p
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Noise Waveforms and Sample Statistics

①

②

③

x(t)

t1 t2

t

t

t

Case A : outputs of a set of noisy amplifiers,
Stationary noise x  with  prob. density pA(x)

τ

Values x(t1) and x(t2) measured on a sample waveform at different t1 and t2
are random values with equal probability density pA(x) and they are:
• in practice identical  for ultra-short  interval   τ
• somewhat  different  for short interval   τ
• different and independent for longer interval  τ

Source

Source

Source
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Noise Waveforms and Sample Statistics

①

②

③

x(t)

t1 t2

t

t

t

Case B : output of a set of low-noise amplifier,
with random baseline offset  x  with  prob. density pB(x)

Values x(t1) and x(t2) measured on a sample waveform at different t1 and t2 : 

• they are random values with probability density pB(x);
• they are equal for any interval  τ , short or long
Case B is different from A, but it can have equal probability density  pB(x) = pA(x)

Source

Source

Source
τ
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Complete Description of Noise 
with Probability Distributions
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Full Description of Noise

①

②

③

x(t)

t1 t2

t

t

t

τ

• For a proper description of the noise the marginal probability   pm(x, t)dx of having 
a value x at time t is NOT sufficient

• The joint probability  pj(x1 , x2 ,t1, t2 )dx1 dx2 of having a value x1 at time t1 and
a value x2 at time t2 must also be considered

Source

Source

Source
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Noise Description with Probability Distributions

①

②

③

x(t)

t1 t2

t

t

t

τ

A full description of the noise is obtained by knowing:
• The marginal probability density   pm(x) = pm(x; t1)   for every instant t1 .

For stationary noise pm does NOT depend on time t1 :  pm = pm(x) 
• The joint probability density  pj (x1 , x2 ) = pj(x1 , x2 ; t1, t2 ) = pj(x1 , x2 ; t1, t1 + τ) 

for every couple of instants t1 and t2 = t1 + τ . 
For stationary noise pj  depends only on the time interval τ, NOT on the time position t1

Source

Source

Source

15



Signal Recovery, 2024/2025 – Noise 1                          Ivan Rech

Note: Time-Average and Ensemble-Average

x(t)

t

t

t

-𝒙 Average of x over the ensemble

< 𝒙 >   Average of x over the time
< 𝒙 > = lim

$→&
4
'$

$ 𝑥(𝑡)
2𝑇

𝑑𝑡

-𝒙 = 4
'&

&

𝑥 𝑝 𝑥 𝑑𝑥
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Basic Description of Noise 
with 2nd order Moments 

of Probability Distribution
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NOTE: Moments of Probability Distributions

Let’s consider a description of noise limited to the 2° order moments, i.e.
Mean square value (or variance)      
 

 𝑚( = 𝑥( = ∫'&
& 𝑥( 𝑝 𝑥 𝑑𝑥 = 𝜎)(

Mean product value (or covariance of x and y)

 𝑚** = 𝑥𝑦 = ∫'&
& 𝑥𝑦 𝑝 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = 𝜎)+

(

• the mn (and mjk ) give information on the features of the distributions
• as the order (n or  j+k) increases, the information  is increasingly of detail 

Moments of a marginal p(x) 𝑚,= 𝑥, = ∫'&
& 𝑥, 𝑝 𝑥 𝑑𝑥

Moments of a joint p(x,y)          𝑚-! = 𝑥- 𝑦! = ∫'&
& 𝑥- 𝑦!𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦

NB: it is obviously

mo = moo = 1     the total probability is normalized to 1
𝑚*=𝑚*.= 𝑥̅ = 0 = B𝑦 = 𝑚/* the mean value of noise is zero 

NB: for clarity,  we call here the two statistical variables x and y instead of x1 and x 2
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Noise Description with 2°order Moments

①

②

③

x(t)

t1 t2

t

t

t

τ

• for every instant t1 the mean square value (or variance)   𝒙𝟐 (𝒕𝟏) = 𝝈𝒙𝟐 (𝒕𝟏)
For stationary noise  𝒙𝟐 does NOT depend on time t1

• for every couple t1 and t2 = t1 + τ the meanproduct 𝒙 (𝒕𝟏)𝒙 (𝒕𝟐) = 𝒙 (𝒕𝟏)𝒙 (𝒕𝟏 + 𝝉)
For stationary noise it depends only on the time interval τ, NOT on the time position t1

Source

Source

Source
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Autocorrelation Function of Noise

20
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Noise Description with the Autocorrelation Function

• is called Autocorrelation Function of the noise

• is always a function of the interval τ between the two instants t1 and t2

• is also a function of t1 only for  non-stationary noise 

NOTE THAT:   

for a noise x the autocorrelation Rxx(τ) is an ensemble-average, 

for a signal x  the autocorrelation function Kxx (τ ) is a time-average

The noise mean square value it is the autocorrelation with τ = 0

𝑥( 𝑡 = 𝑅))(𝑡, 0)
for stationary noise it is constant at any t

𝒙𝟐 = 𝑹𝒙𝒙(𝟎)
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𝑹𝒙𝒙(𝒕𝟏, 𝒕𝟏 + 𝝉) = 𝑹𝒙𝒙 𝒕𝟏, 𝒕𝟐 = 𝒙 (𝒕𝟏)𝒙 (𝒕𝟐) = 𝒙 𝒕𝟏 𝒙 𝒕𝟏 + 𝝉
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Power Spectrum of Noise

22



Signal Recovery, 2024/2025 – Noise 1                          Ivan Rech

Noise Description with the Power Specrum
Noise has power-type waveforms (divergent energy → ∞) 

which have statistical variations from waveform to waveform of the ensemble. 

By averaging over the ensemble of the autocorrelations of  the noise waveforms , 

the  concepts of power and power spectrum introduced for the signals

can be extended to the noise

𝑃 = lim
$→&

∫'$
$ ) !(4)

($
𝑑𝛼 = lim

$→&
∫'&
& )"

!(4)
($

𝑑𝛼 = lim
$→&

∫'&
& 6" (7)

#

($
𝑑𝑓 =

=∫'&
& lim

$→&

6" (7)
#

($
𝑑𝑓 =∫'&

& lim
$→&

6" (7)
#

($
𝑑𝑓

Therefore, the Power Spectrum of the noise is defined as

𝑆) 𝑓 = lim
(→*

+# (-)
$

/(
and the noise power is

𝑃 = 4
'&

&

𝑆) 𝑓 𝑑𝑓
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Noise Description with the Power Spectrum

By averaging over the ensemble we can extend to the noise 

also the second definition of Power Spectrum introduced for the signals

24

𝑃 = 4
'&

&

𝑆) 𝑓 𝑑𝑓 =𝐾)) 0

𝑆0 𝑓 = lim
(→*

+#(-)
$

/(

𝑆) 𝑓 = 𝐹[𝐾)) 𝜏 ]= 𝐹[ 𝐾)) 𝜏 ] =

= 𝐹[ lim
$→&

∫$%
% )" 4 )" 49: ;4

($
]=

= F[ lim
$→&

!&&," :
($

] = lim
$→&

<[!&&,"(:)]
($

The Power Spectrum of the noise can be directly defined as

The noise power is:
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Power Spectrum of Non-Stationary Noise
𝑆) 𝑓 = 𝐹[ 𝐾)) 𝜏 ]
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𝐾) ) 𝜏 results from the double average, 

first over the time 𝐾)) 𝜏 =< 𝑥 𝑡 𝑥(𝑡 + 𝜏) > then over the ensemble

It can be shown that the order of averaging can be exchanged

𝑲𝒙 𝒙 𝝉 = < 𝒙 𝒕 𝒙 𝒕 + 𝝉 > =< 𝒙 𝒕 𝒙(𝒕 + 𝝉) > = < 𝑹𝒙𝒙(𝒕, 𝒕 + 𝝉) >

The power spectrum thus is related to the ensemble autocorrelation function

𝑺𝒙 𝒇 =  𝑭[< 𝑹𝒙𝒙(𝒕, 𝒕 + 𝝉) > ] 

• For non-stationary noise Sx(f) can be defined with reference to 
the time-average of the ensemble autocorrelation function of the noise.

• For stationary noise there is no need of time-averaging: it is simply

< 𝑹𝒙𝒙(𝒕, 𝒕 + 𝝉) > = 𝑹𝒙𝒙 𝝉  

and     

𝑺𝒙 𝒇 =  𝑭[𝑹𝒙𝒙(𝝉)]
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Bilateral and Unilateral Spectral Power Density
• The mathematical spectral density Sx (f) defined over - ∞ < f < ∞ , 

is a bilateral spectral density SxB (f)

attention is called on this fact by the second subscript B

• The noise power computed with the bilateral density SxB is

𝑃 = ∫'&
& 𝑆)> 𝑓 𝑑𝑓
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• Since SxB (f) is symmetrical   SxB (-f) =  SxB (+f) ,  it is 

𝑃 = 2 ∫/
& 𝑆)> 𝑓 𝑑𝑓 = ∫/

&2𝑆)> 𝑓 𝑑𝑓

• A unilateral «physical» spectral density SxU(f) = 𝟐𝑺𝒙𝑩(f) is usually employed in 

engineering tasks for making computations only in the positive frequency range

• The noise power computed with with the unilateral density SxU is

𝑃 = ∫/
& 𝑆)@ 𝑓 𝑑𝑓


