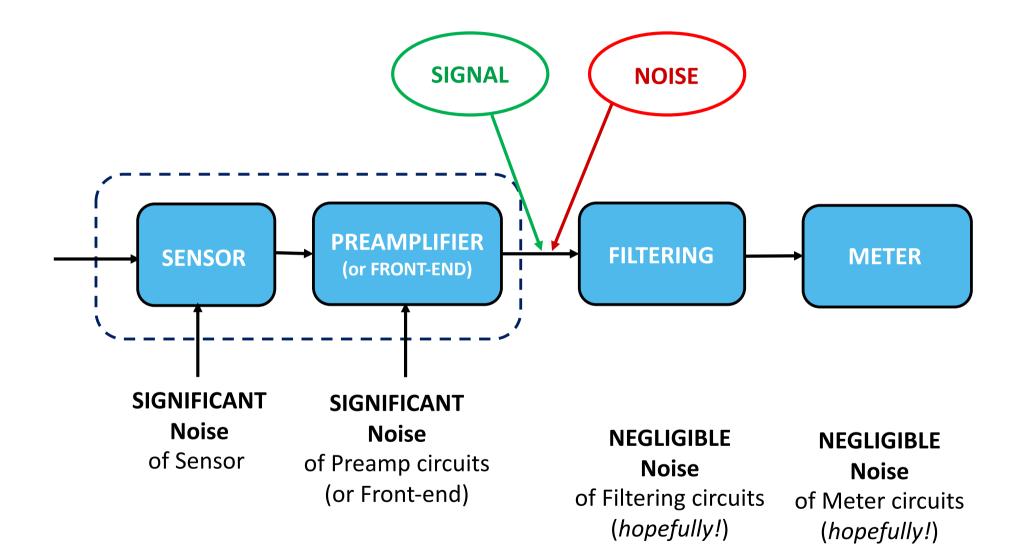
COURSE OUTLINE

- Introduction
- Signals and Noise: 1) Description
- Filtering
- Sensors and associated electronics

Noise Description

- Noise Waveforms and Samples
- Statistics of Noise Samples and Probability Distribution (PD)
- Complete Description of Noise with Probability Distributions
- Basic Description of Noise with the 2° order Moments of PD
- Autocorrelation Function of Noise
- Power Spectrum of Noise

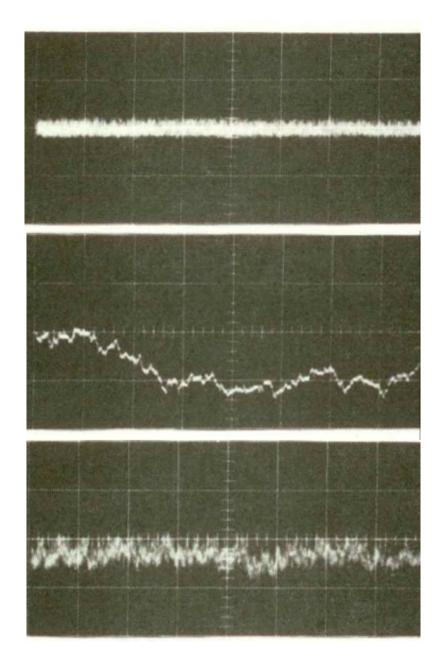
Set-Up for Sensor Measurements



Noise Waveforms and Samples

4

Noise waveforms (oscilloscope @ 50µs/div)



White Noise

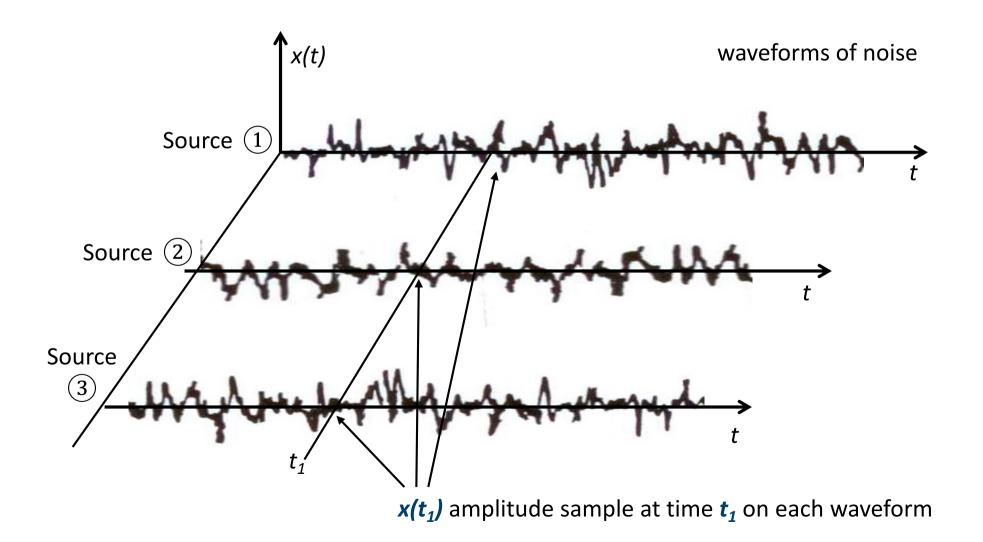
spectrum **S** = constant

Random-Walk Noise spectrum $S = \frac{1}{f^2}$

Flicker Noise spectrum $S = \frac{1}{f}$

Noise Waveform Ensemble

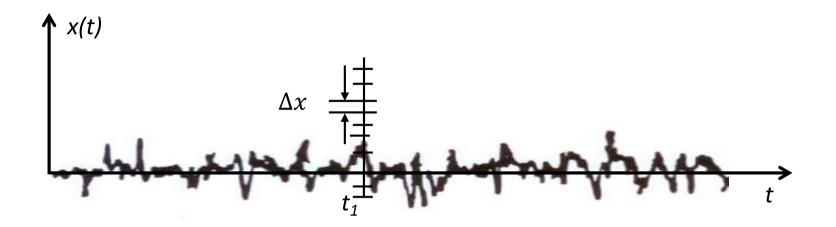
Set of identical noise sources (many **identical** amplifiers or resistors or other)



Statistics of Noise Samples and Probability Distribution (PD)

7

Classifying the Amplitude of Noise Samples



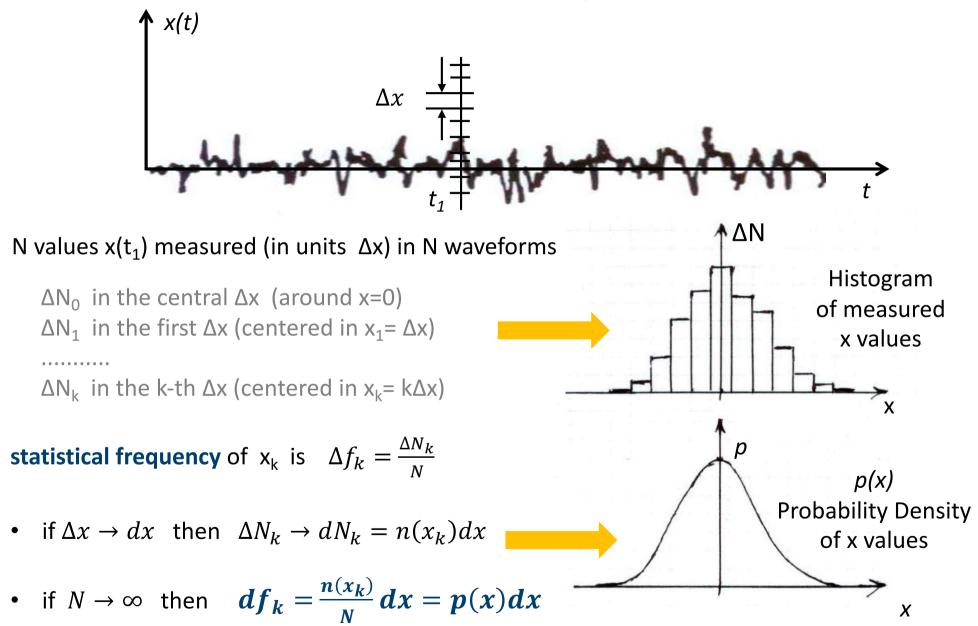
Starting point: The amplitude $x(t_1)$ of the noise waveform at time t_1

Measure: $x(t_1)$ is compared to a scale of discrete values x_k spaced by constant interval Δx and is classified at the nearest value x_k of the scale

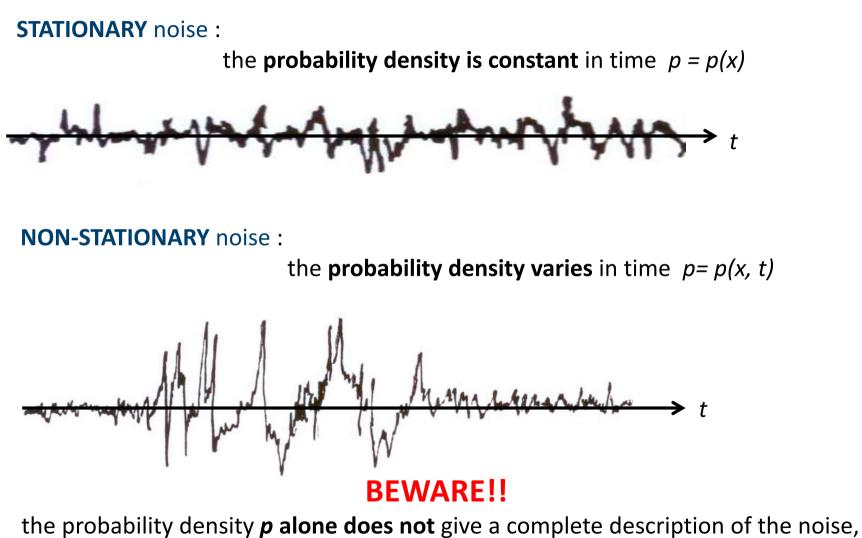
A high number N of noise waveform is sampled and measured of which ΔN_k is the number of sample waveforms classified at x_k

 $\Delta f_k = \frac{\Delta N_k}{N}$ is called **statistical frequency** of the amplitude x_k

Noise Sample Statistics and Probability

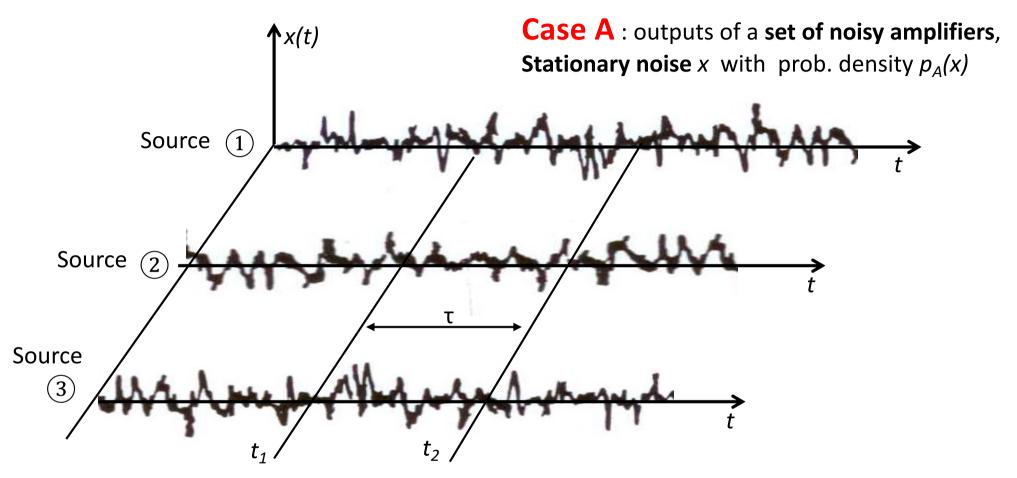


Stationary and Non-stationary Noise



in fact different cases can have equal probability density p

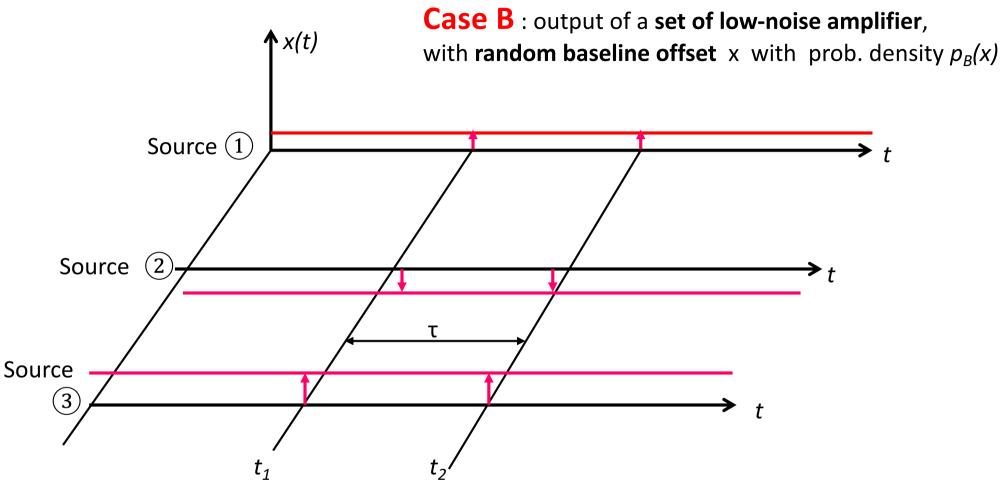
Noise Waveforms and Sample Statistics



Values $x(t_1)$ and $x(t_2)$ measured on a sample waveform at different t_1 and t_2 are random values with equal probability density $p_A(x)$ and they are:

- in practice identical for ultra-short interval τ
- somewhat different for short interval τ
- different and **independent for longer** interval τ

Noise Waveforms and Sample Statistics

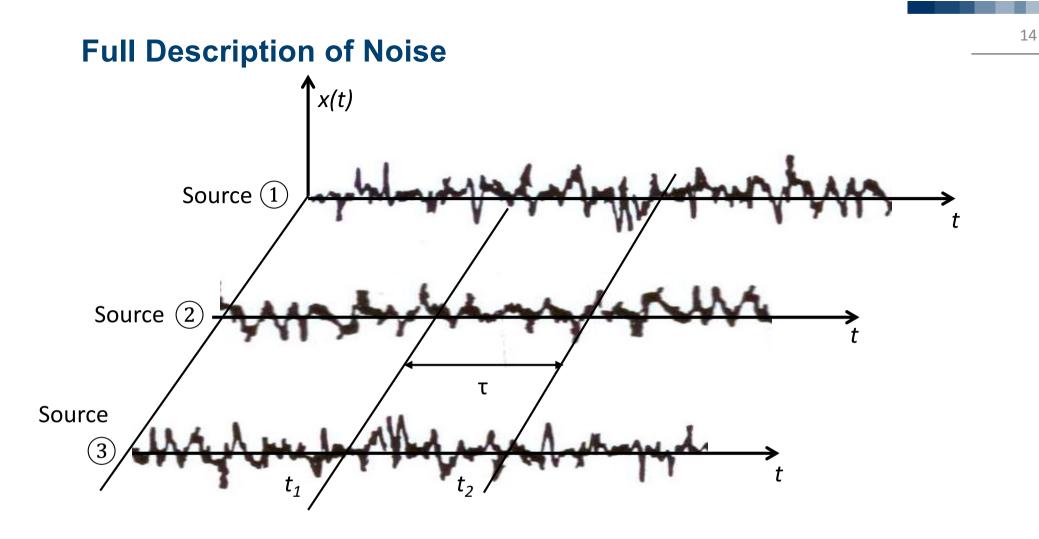


Values $x(t_1)$ and $x(t_2)$ measured on a sample waveform at different t_1 and t_2 :

- they are random values with probability density $p_B(x)$;
- they are equal for any interval τ, short or long

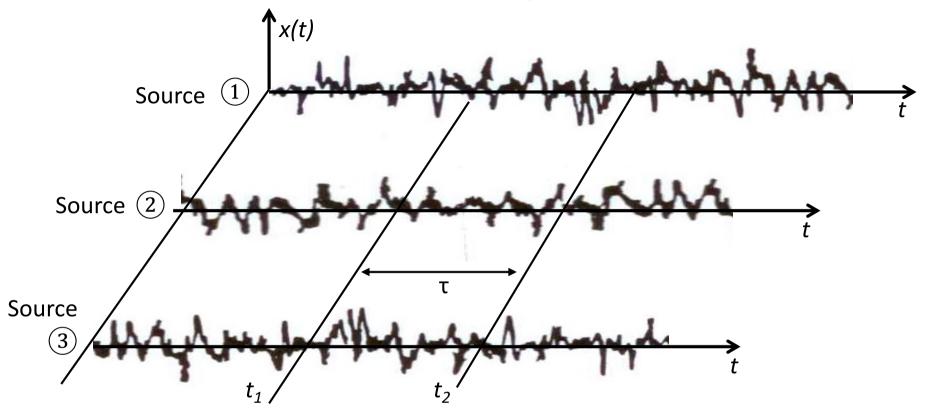
Case B is different from A, but it can have equal probability density $p_B(x) = p_A(x)$

Complete Description of Noise with Probability Distributions



- For a proper description of the noise the marginal probability p_m(x, t)dx of having a value x at time t is NOT sufficient
- The joint probability p_j(x₁, x₂, t₁, t₂)dx₁ dx₂ of having a value x₁ at time t₁ and a value x₂ at time t₂ must also be considered

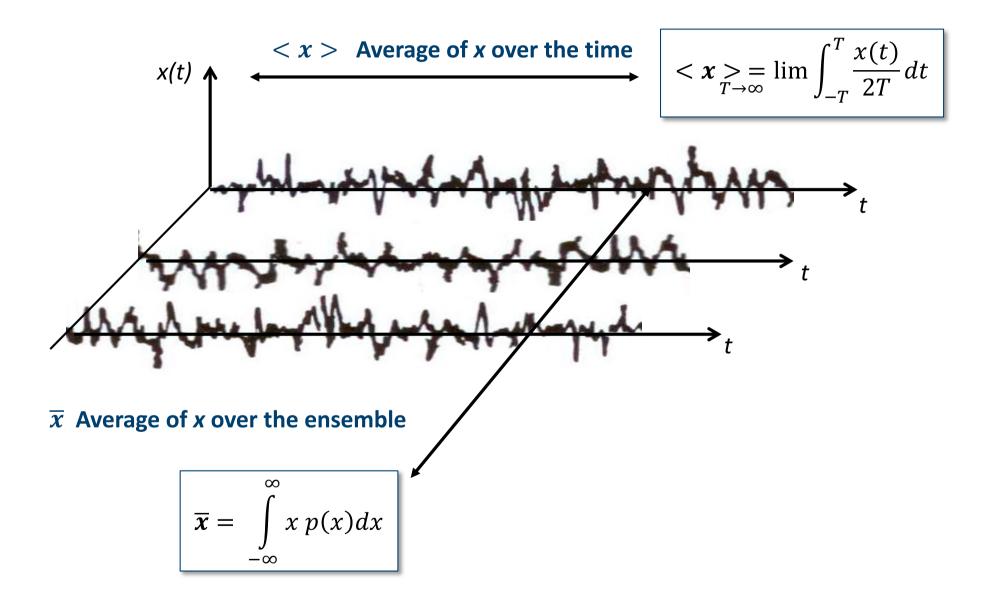
Noise Description with Probability Distributions



A full description of the noise is obtained by knowing:

- The **marginal** probability density $p_m(x) = p_m(x; t_1)$ for **every** instant t_1 . For stationary noise p_m does NOT depend on time t_1 : $p_m = p_m(x)$
- The joint probability density p_j (x₁, x₂) = p_j(x₁, x₂; t₁, t₂) = p_j(x₁, x₂; t₁, t₁ + τ) for every couple of instants t₁ and t₂ = t₁ + τ.
 For stationary noise p_j depends only on the time interval τ, NOT on the time position t₁

Note: Time-Average and Ensemble-Average



Basic Description of Noise with 2nd order Moments of Probability Distribution

NOTE: Moments of Probability Distributions

NB: for clarity, we call here the two statistical variables x and y instead of x_1 and x_2

Moments of a marginal
$$p(x)$$
 $m_n = \overline{x^n} = \int_{-\infty}^{\infty} x^n p(x) dx$
Moments of a joint $p(x,y)$ $m_{jk} = \overline{x^j y^k} = \int_{-\infty}^{\infty} x^j y^k p(x,y) dx dy$

- the m_n (and m_{jk}) give information on the features of the distributions
- as the order (n or j+k) increases, the information is increasingly of detail

Let's consider a description of noise limited to the 2° order moments, i.e. Mean square value (or variance)

$$m_2 = \overline{x^2} = \int_{-\infty}^{\infty} x^2 p(x) dx = \sigma_x^2$$

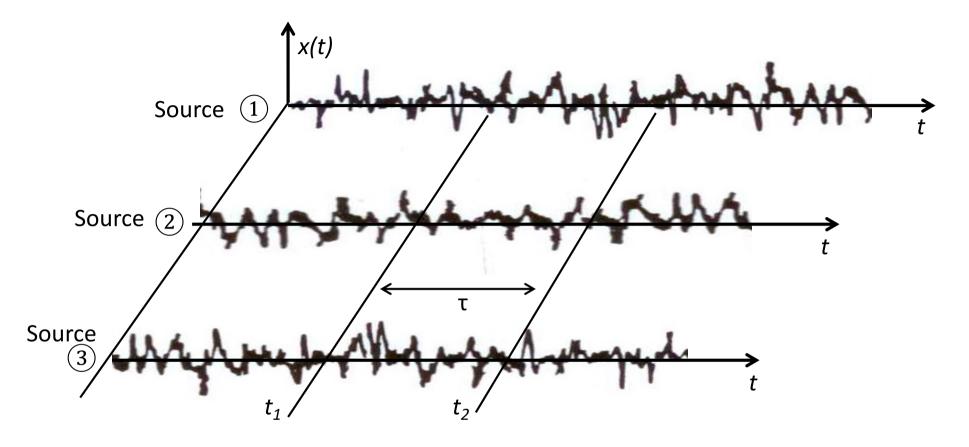
Mean product value (or covariance of *x* and *y*)

$$m_{11} = \overline{xy} = \int_{-\infty}^{\infty} xy \, p(x, y) dx dy = \sigma_{xy}^{2}$$

NB: it is obviously

 $m_o = m_{oo} = 1$ the total probability is normalized to 1 $m_1 = m_{1o} = \bar{x} = 0 = \bar{y} = m_{01}$ the mean value of noise is zero

Noise Description with 2°order Moments



- for every_instant t_1 the mean square value (or variance) $\overline{x^2(t_1)} = \sigma_x^2(t_1)$ For stationary noise $\overline{x^2}$ does NOT depend on time t_1
- for every couple t_1 and $t_2 = t_1 + \tau$ the meanproduct $\overline{x(t_1)x(t_2)} = \overline{x(t_1)x(t_1 + \tau)}$ For stationary noise it depends only on the time interval τ , NOT on the time position t_1

Signal Recovery, 2024/2025 – Noise 1

Autocorrelation Function of Noise

Noise Description with the Autocorrelation Function

$$R_{xx}(t_1, t_1 + \tau) = R_{xx}(t_1, t_2) = \overline{x(t_1)x(t_2)} = \overline{x(t_1)x(t_1 + \tau)}$$

- is called **Autocorrelation Function** of the noise
- is always a function of the interval τ between the two instants t_1 and t_2
- is also a function of t_1 only for <u>non-stationary</u> noise

NOTE THAT:

for a noise x the autocorrelation $R_{xx}(\tau)$ is an <u>ensemble-average</u>,

for a signal x the autocorrelation function $K_{xx}(\tau)$ is a <u>time-average</u>

The **noise mean square value** it is the autocorrelation with $\tau = 0$

$$\overline{x^2(t)} = R_{xx}(t,0)$$

for <u>stationary</u> noise it is <u>constant</u> at any t

$$\overline{x^2} = R_{xx}(\mathbf{0})$$

22

Power Spectrum of Noise

Noise Description with the Power Specrum

Noise has power-type waveforms (divergent energy $\rightarrow \infty$) which have statistical variations from waveform to waveform of the ensemble. By **averaging over the ensemble** of the autocorrelations of the noise waveforms, the concepts of power and power spectrum **introduced** <u>for the signals</u> can be **extended to the noise**

$$P = \overline{\lim_{T \to \infty} \int_{-T}^{T} \frac{x^{2}(\alpha)}{2T} d\alpha} = \overline{\lim_{T \to \infty} \int_{-\infty}^{\infty} \frac{x_{T}^{2}(\alpha)}{2T} d\alpha} = \lim_{T \to \infty} \int_{-\infty}^{\infty} \frac{\left|x_{T}(f)\right|^{2}}{2T} df =$$
$$= \int_{-\infty}^{\infty} \overline{\lim_{T \to \infty} \frac{\left|x_{T}(f)\right|^{2}}{2T}} df = \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{\overline{\left|x_{T}(f)\right|^{2}}}{2T} df$$

Therefore, the Power Spectrum of the noise is defined as

$$S_{x}(f) = \lim_{T \to \infty} \frac{\left| X_{T}(f) \right|^{2}}{2T}$$

and the noise power is
$$P = \int_{-\infty}^{\infty} S_{x}(f) df$$

Noise Description with the Power Spectrum

By averaging over the ensemble we can extend to the noise also the second definition of Power Spectrum introduced for the signals

$$S_{x}(f) = \overline{F[K_{xx}(\tau)]} = F[\overline{K_{xx}(\tau)}] =$$
$$= F[\lim_{T \to \infty} \frac{\int_{-\infty}^{\infty} x_{T}(\alpha) x_{T}(\alpha + \tau) d\alpha}{2T}] =$$
$$= F[\lim_{T \to \infty} \frac{k_{xx,T}(\tau)}{2T}] = \lim_{T \to \infty} \frac{F[\overline{k_{xx,T}(\tau)}]}{2T}$$

The Power Spectrum of the noise can be directly defined as

$$S_{\chi}(f) = \lim_{T \to \infty} \frac{\overline{|X_T(f)|^2}}{2T}$$

The noise power is:

$$P = \int_{-\infty}^{\infty} S_{x}(f) df = \overline{K_{xx}(0)}$$

Power Spectrum of Non-Stationary Noise $S_x(f) = F[\overline{K_{xx}(\tau)}]$

 $\overline{K_{xx}(\tau)}$ results from the double average,

first over the time $K_{xx}(\tau) = \langle x(t)x(t + \tau) \rangle$ then over the ensemble

It can be shown that the order of averaging can be exchanged

 $\overline{K_{xx}(\tau)} = \overline{\langle x(t)x(t+\tau) \rangle} = \langle \overline{x(t)x(t+\tau)} \rangle = \langle R_{xx}(t,t+\tau) \rangle$

The power spectrum thus is related to the ensemble autocorrelation function

 $S_x(f) = F[\langle R_{xx}(t, t+\tau) \rangle]$

• For non-stationary noise $S_x(f)$ can be defined with reference to the time-average of the ensemble autocorrelation function of the noise.

• For **stationary** noise there is no need of time-averaging: it is simply

$$< R_{\chi\chi}(t,t+\tau) > = R_{\chi\chi}(\tau)$$

and

$$S_x(f) = F[R_{xx}(\tau)]$$

Bilateral and Unilateral Spectral Power Density

• The mathematical spectral density $S_x(f)$ defined over - $\infty < f < \infty$,

is a **bilateral** spectral density $S_{xB}(f)$

attention is called on this fact by the second subscript *B*

• The noise power computed with the bilateral density S_{xB} is

$$P = \int_{-\infty}^{\infty} S_{xB}(f) df$$

• Since S_{xB} (f) is symmetrical $S_{xB}(-f) = S_{xB}(+f)$, it is

$$P = 2 \int_0^\infty S_{xB}(f) df = \int_0^\infty 2S_{xB}(f) df$$

- A unilateral «physical» spectral density $S_{xU}(f) = 2S_{xB}(f)$ is usually employed in engineering tasks for making computations only in the positive frequency range
- The noise power computed with with the unilateral density S_{xU} is

$$P = \int_0^\infty S_{xU}(f) df$$

