Sensors, Signals and Noise

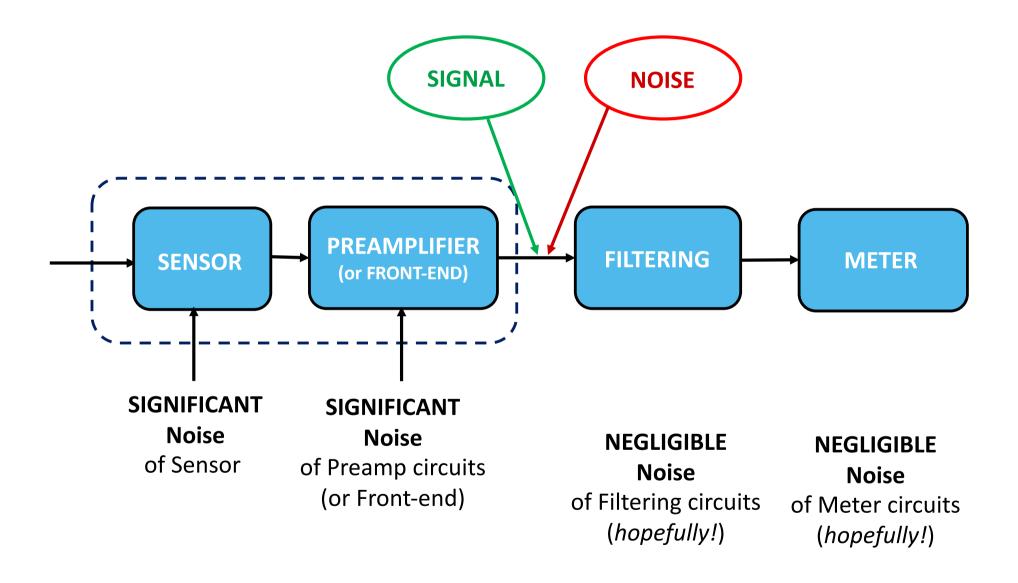
COURSE OUTLINE

- Introduction
- Signals and Noise: 1) Description
- Filtering
- Sensors and associated electronics

Noise Description

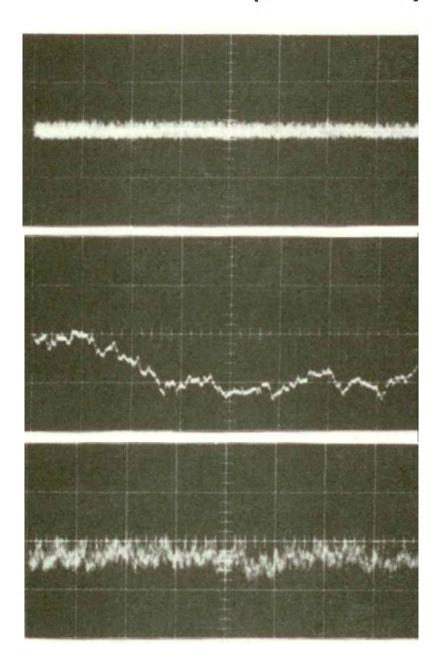
- Noise Waveforms and Samples
- Statistics of Noise Samples and Probability Distribution (PD)
- Complete Description of Noise with Probability Distributions
- Basic Description of Noise with the 2°order Moments of PD
- Autocorrelation Function of Noise
- Power Spectrum of Noise

Set-Up for Sensor Measurements



Noise Waveforms and Samples

Noise waveforms (oscilloscope @ 50µs/div)



White Noise

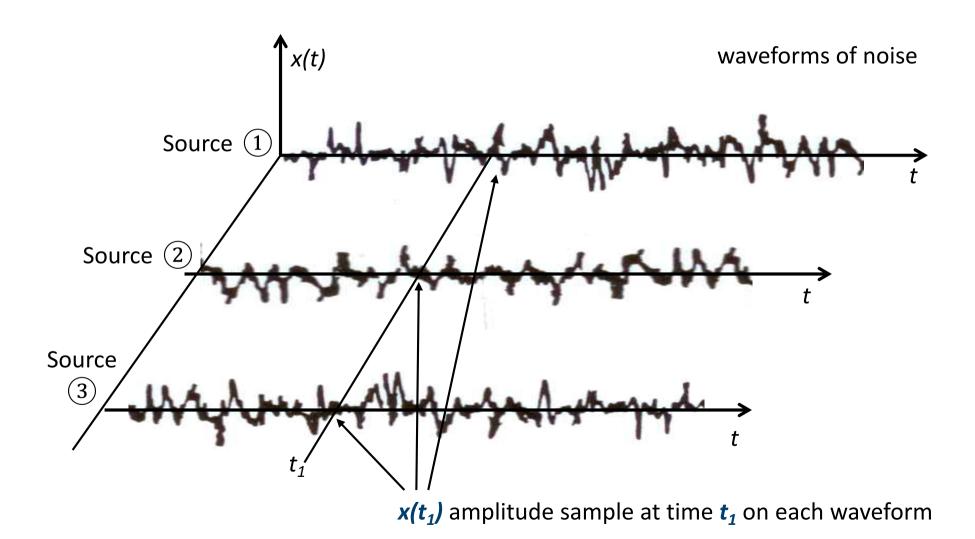
spectrum *S* = *constant*

Random-Walk Noise spectrum $S = \frac{1}{f^2}$

Flicker Noise spectrum
$$S = \frac{1}{f}$$

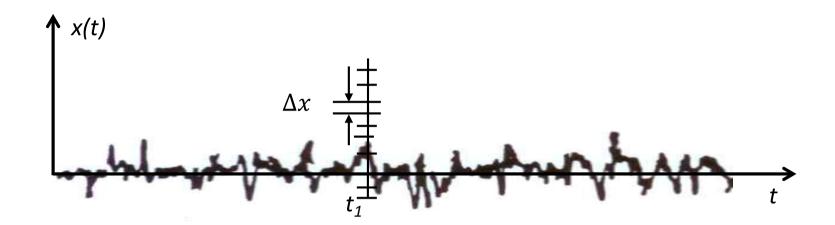
Noise Waveform Ensemble

Set of identical noise sources (many identical amplifiers or resistors or other)



Statistics of Noise Samples and Probability Distribution (PD)

Classifying the Amplitude of Noise Samples



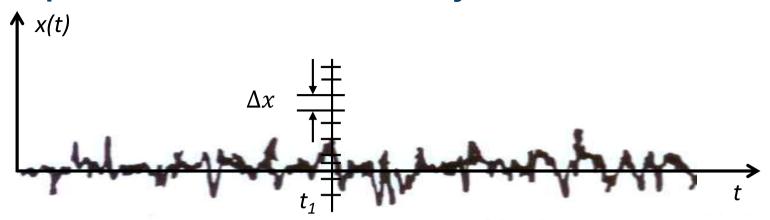
Starting point: The amplitude $x(t_1)$ of the noise waveform at time t_1

Measure: $x(t_1)$ is compared to a scale of discrete values x_k spaced by constant interval Δx and is classified at the nearest value x_k of the scale

A high number N of noise waveform is sampled and measured of which ΔN_k is the number of sample waveforms classified at x_k

$$\Delta f_k = \frac{\Delta N_k}{N}$$
 is called **statistical frequency** of the amplitude x_k

Noise Sample Statistics and Probability



N values $x(t_1)$ measured (in units Δx) in N waveforms

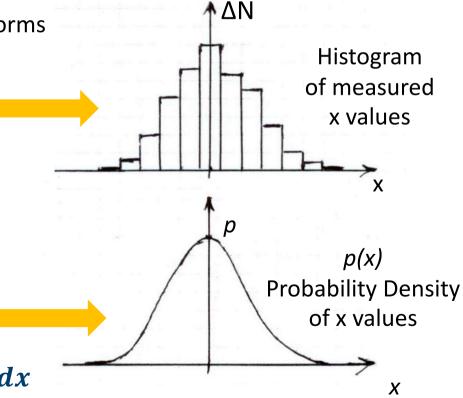
 ΔN_0 in the central Δx (around x=0)

 ΔN_1 in the first Δx (centered in $x_1 = \Delta x$)

• • • • • • • • • •

 ΔN_k in the k-th Δx (centered in $x_k = k\Delta x$)

• if
$$N \to \infty$$
 then $df_k = \frac{n(x_k)}{N} dx = p(x) dx$



Stationary and Non-stationary Noise

STATIONARY noise:

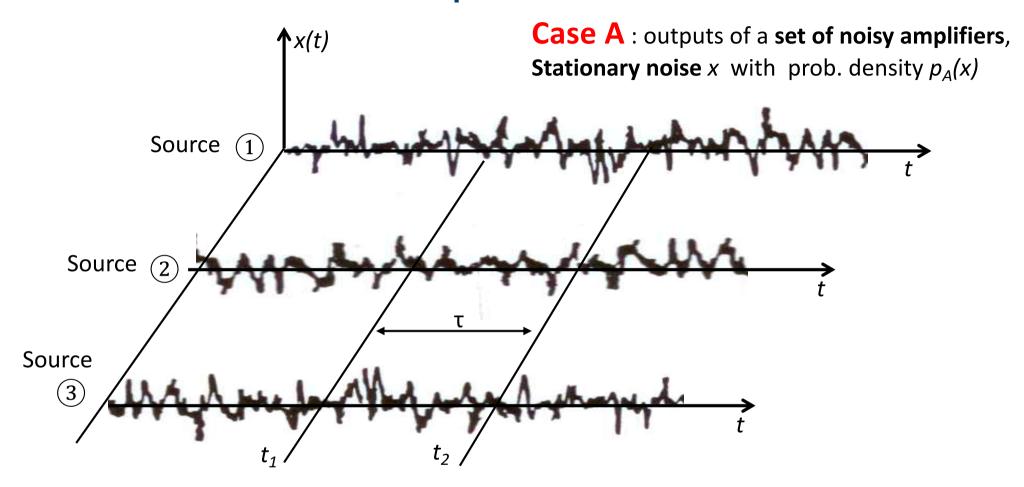
the **probability density is constant** in time p = p(x)

NON-STATIONARY noise:

the **probability density varies** in time p = p(x, t)

the probability density **p** alone does not give a complete description of the noise, in fact <u>different cases</u> can have <u>equal probability</u> density **p**

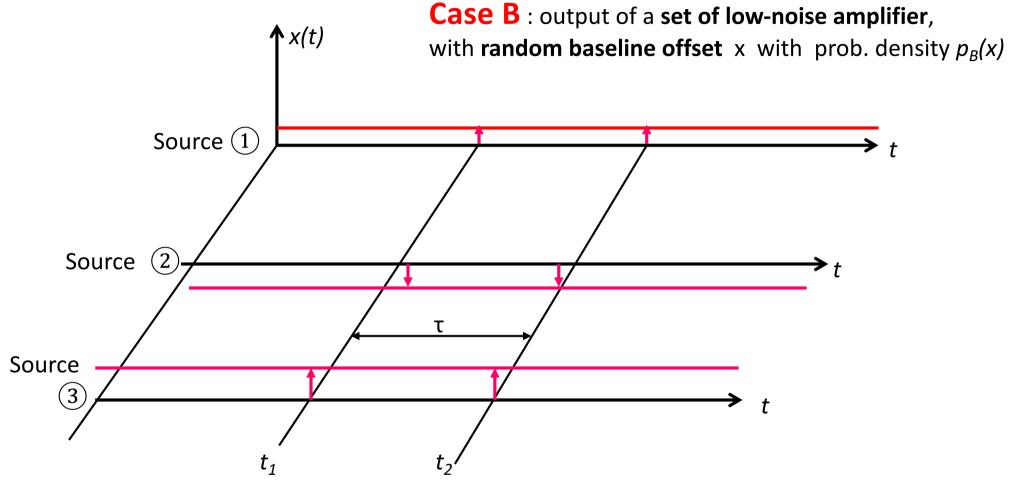
Noise Waveforms and Sample Statistics



Values $x(t_1)$ and $x(t_2)$ measured on a sample waveform at different t_1 and t_2 are random values with equal probability density $p_A(x)$ and they are:

- in practice identical for ultra-short interval τ
- somewhat different for short interval τ
- different and independent for longer interval τ

Noise Waveforms and Sample Statistics



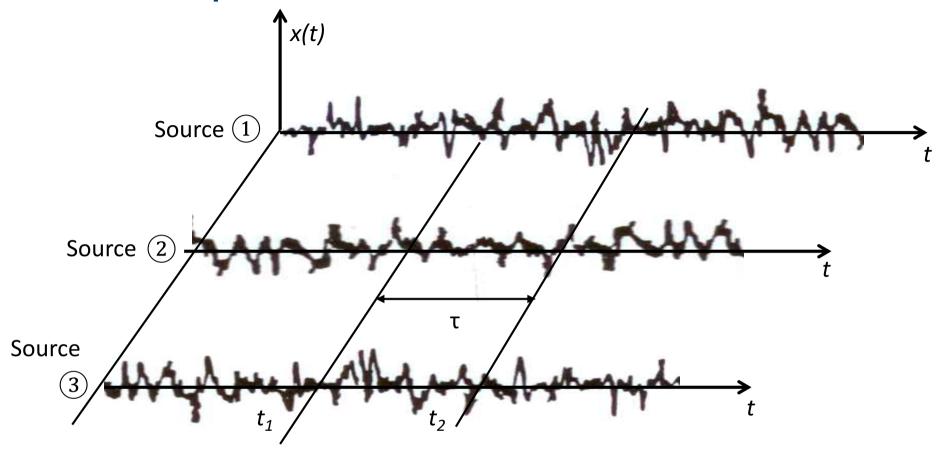
Values $x(t_1)$ and $x(t_2)$ measured on a sample waveform at different t_1 and t_2 :

- they are random values with probability density $p_B(x)$;
- they are equal for any interval τ, short or long

Case B is different from A, but it can have equal probability density $p_B(x) = p_A(x)$

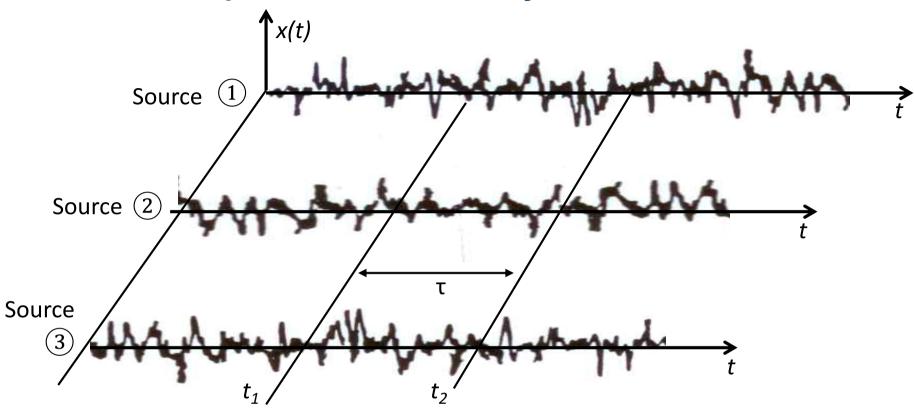
Complete Description of Noise with Probability Distributions

Full Description of Noise



- For a proper description of the noise the marginal probability $p_m(x, t)dx$ of having a value x at time t is **NOT sufficient**
- The **joint** probability $p_j(x_1, x_2, t_1, t_2)dx_1 dx_2$ of having a value x_1 at time t_1 and a value x_2 at time t_2 must also be considered

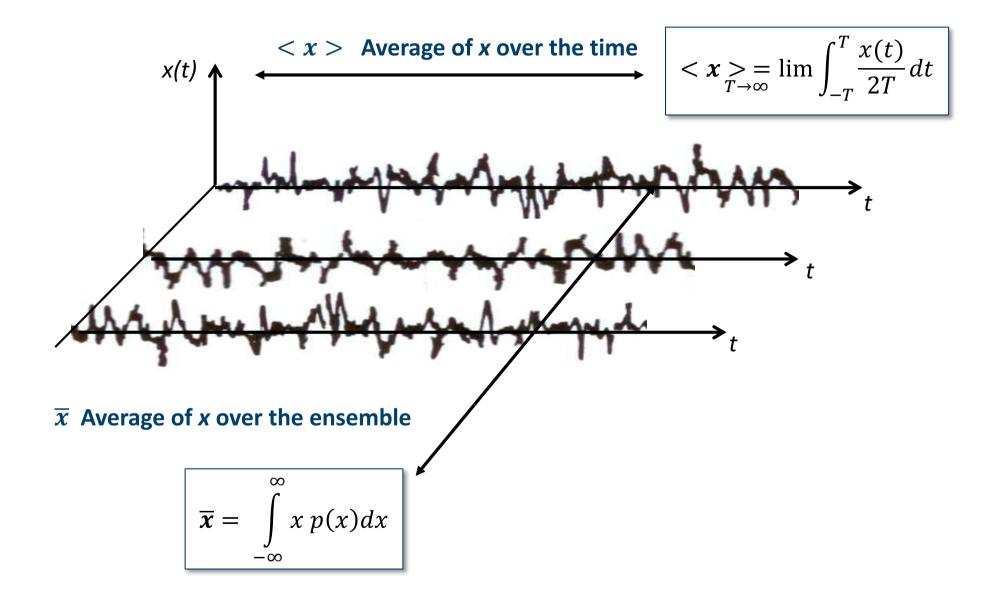
Noise Description with Probability Distributions



A full description of the noise is obtained by knowing:

- The **marginal** probability density $p_m(x) = p_m(x; t_1)$ for **every** instant t_1 . For stationary noise p_m does NOT depend on time t_1 : $p_m = p_m(x)$
- The **joint** probability density $p_j(x_1, x_2) = p_j(x_1, x_2; t_1, t_2) = p_j(x_1, x_2; t_1, t_1 + \tau)$ for **every couple** of instants t_1 and $t_2 = t_1 + \tau$. For <u>stationary</u> noise p_j depends only on the <u>time interval</u> τ , NOT on the time position t_1

Note: Time-Average and Ensemble-Average



Basic Description of Noise with 2nd order Moments of Probability Distribution

NOTE: Moments of Probability Distributions

NB: for clarity, we call here the two statistical variables x and y instead of x_1 and x_2

Moments of a marginal p(x) $m_n = \overline{x^n} = \int_{-\infty}^{\infty} x^n p(x) dx$ Moments of a joint p(x,y) $m_{jk} = \overline{x^j y^k} = \int_{-\infty}^{\infty} x^j y^k p(x,y) dx dy$

- the m_n (and m_{ik}) give information on the features of the distributions
- as the order (n or j+k) increases, the information is increasingly of detail

Let's consider a description of noise limited to the 2° order moments, i.e.

Mean square value (or variance)

$$m_2 = \overline{x^2} = \int_{-\infty}^{\infty} x^2 p(x) dx = \sigma_x^2$$

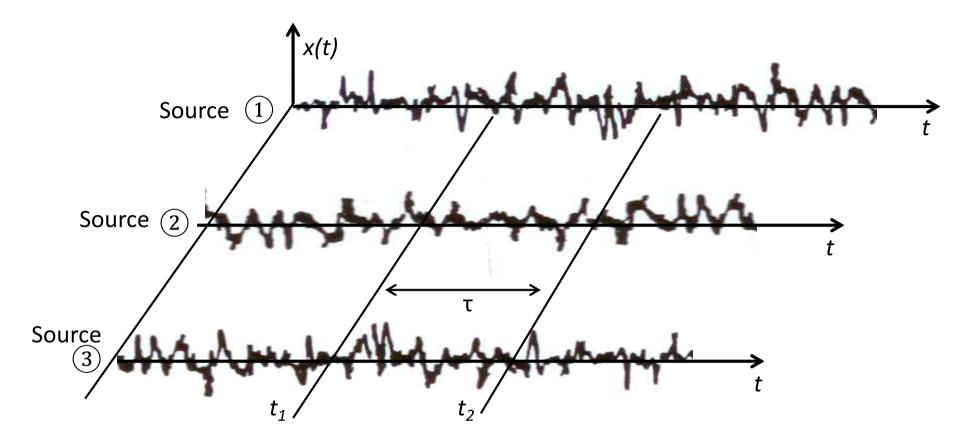
Mean product value (or covariance of x and y)

$$m_{11} = \overline{xy} = \int_{-\infty}^{\infty} xy \, p(x, y) dx dy = \sigma_{xy}^2$$

NB: it is obviously

 $m_o = m_{oo} = 1$ the total probability is normalized to 1 $m_1 = m_{1o} = \bar{x} = 0 = \bar{y} = m_{01}$ the mean value of noise is zero

Noise Description with 2°order Moments



- for every_instant t_1 the mean square value (or variance) $\overline{x^2(t_1)} = \sigma_x^2(t_1)$ For stationary noise $\overline{x^2}$ does NOT depend on time t_1
- for every couple t_1 and $t_2 = t_1 + \tau$ the meanproduct $\overline{x(t_1)x(t_2)} = \overline{x(t_1)x(t_1 + \tau)}$ For stationary noise it depends only on the time interval τ , NOT on the time position t_1

Autocorrelation Function of Noise

Noise Description with the Autocorrelation Function

$$R_{xx}(t_1, t_1 + \tau) = R_{xx}(t_1, t_2) = \overline{x(t_1)x(t_2)} = \overline{x(t_1)x(t_1 + \tau)}$$

- is called Autocorrelation Function of the noise
- is always a function of the interval τ between the two instants t_1 and t_2
- is also a function of t_1 only for non-stationary noise

NOTE THAT:

for a noise x the autocorrelation $R_{xx}(\tau)$ is an <u>ensemble-average</u>, for a <u>signal</u> x the autocorrelation function $K_{xx}(\tau)$ is a <u>time-average</u>

The **noise mean square value** it is the autocorrelation with $\tau = 0$

$$\overline{x^2(t)} = R_{\chi\chi}(t,0)$$

for stationary noise it is constant at any t

$$\overline{x^2} = R_{xx}(\mathbf{0})$$

Power Spectrum of Noise

Noise Description with the Power Specrum

Noise has power-type waveforms (divergent energy $\rightarrow \infty$)

which have statistical variations from waveform to waveform of the ensemble.

By averaging over the ensemble of the autocorrelations of the noise waveforms,

the concepts of power and power spectrum introduced for the signals

can be extended to the noise

$$P = \overline{\lim_{T \to \infty} \int_{-T}^{T} \frac{x^{2}(\alpha)}{2T} d\alpha} = \overline{\lim_{T \to \infty} \int_{-\infty}^{\infty} \frac{x_{T}^{2}(\alpha)}{2T} d\alpha} = \lim_{T \to \infty} \int_{-\infty}^{\infty} \frac{\left|X_{T}(f)\right|^{2}}{2T} df = \int_{-\infty}^{\infty} \overline{\lim_{T \to \infty} \frac{\left|X_{T}(f)\right|^{2}}{2T}} df$$

Therefore, the Power Spectrum of the noise is defined as

$$S_x(f) = \lim_{T \to \infty} \frac{\left| X_T(f) \right|^2}{2T}$$

and the noise power is

$$P = \int_{-\infty}^{\infty} S_{x}(f)df$$

Noise Description with the Power Spectrum

By averaging over the ensemble we can extend to the noise also the second definition of Power Spectrum introduced for the signals

$$S_{x}(f) = \overline{F[K_{xx}(\tau)]} = F[\overline{K_{xx}(\tau)}] =$$

$$= F[\lim_{T \to \infty} \frac{\int_{-\infty}^{\infty} x_{T}(\alpha) x_{T}(\alpha + \tau) d\alpha}{2T}] =$$

$$= F[\overline{\lim_{T \to \infty} \frac{k_{xx,T}(\tau)}{2T}}] = \lim_{T \to \infty} \frac{F[\overline{k_{xx,T}(\tau)}]}{2T}$$

The Power Spectrum of the noise can be directly defined as

$$S_{x}(f) = \lim_{T \to \infty} \frac{\overline{|X_{T}(f)|^{2}}}{2T}$$

The noise power is:

$$P = \int_{-\infty}^{\infty} S_{x}(f)df = \overline{K_{xx}(0)}$$

Power Spectrum of Non-Stationary Noise

$$S_{x}(f) = F[\overline{K_{xx}(\tau)}]$$

 $\overline{K_{\chi\chi}(\tau)}$ results from the double average,

first over the time $K_{xx}(\tau) = \langle x(t)x(t+\tau) \rangle$ then over the ensemble

It can be shown that the order of averaging can be exchanged

$$\overline{K_{xx}(\tau)} = \overline{\langle x(t)x(t+\tau) \rangle} = \langle \overline{x(t)x(t+\tau)} \rangle = \langle R_{xx}(t,t+\tau) \rangle$$

The power spectrum thus is related to the ensemble autocorrelation function

$$S_{x}(f) = F[\langle R_{xx}(t, t+\tau) \rangle]$$

- For non-stationary noise $S_x(f)$ can be defined with reference to the time-average of the ensemble autocorrelation function of the noise.
- For **stationary** noise there is no need of time-averaging: it is simply

$$\langle R_{xx}(t,t+\tau) \rangle = R_{xx}(\tau)$$

and

$$S_x(f) = F[R_{xx}(\tau)]$$

Bilateral and Unilateral Spectral Power Density

• The mathematical spectral density $S_x(f)$ defined over - ∞ < f < ∞ ,

is a **bilateral** spectral density S_{xB} (f)

attention is called on this fact by the second subscript B

• The noise power computed with the bilateral density S_{xB} is

$$P = \int_{-\infty}^{\infty} S_{xB}(f) df$$

• Since S_{xB} (f) is symmetrical S_{xB} (-f) = S_{xB} (+f), it is

$$P = 2 \int_0^\infty S_{xB}(f)df = \int_0^\infty 2S_{xB}(f)df$$

- A unilateral «physical» spectral density $S_{xU}(f) = 2S_{xB}(f)$ is usually employed in engineering tasks for making computations only in the positive frequency range
- The noise power computed with with the unilateral density S_{xU} is

$$P = \int_0^\infty S_{xU}(f)df$$

